We are given:
\[
f(x) = \frac{x - 2}{2x + 1}
\]
We must find:
\[
f(f(x)) = -x
\]
First, compute \( f(f(x)) \).
Let \( y = f(x) = \frac{x - 2}{2x + 1} \). Then,
\[
f(f(x)) = f(y) = \frac{y - 2}{2y + 1}
= \frac{\frac{x - 2}{2x + 1} - 2}{2\left(\frac{x - 2}{2x + 1}\right) + 1}
\]
Simplify numerator:
\[
\frac{x - 2 - 2(2x + 1)}{2x + 1}
= \frac{x - 2 - 4x - 2}{2x + 1}
= \frac{-3x - 4}{2x + 1}
\]
Simplify denominator:
\[
\frac{2(x - 2) + (2x + 1)}{2x + 1}
= \frac{2x - 4 + 2x + 1}{2x + 1}
= \frac{4x - 3}{2x + 1}
\]
So,
\[
f(f(x)) = \frac{\frac{-3x - 4}{2x + 1}}{\frac{4x - 3}{2x + 1}} = \frac{-3x - 4}{4x - 3}
\]
We are told that \( f(f(x)) = -x \), so:
\[
\frac{-3x - 4}{4x - 3} = -x
\]
Multiply both sides by \( 4x - 3 \):
\[
-3x - 4 = -x(4x - 3)
= -4x^2 + 3x
\]
Rearrange:
\[
-3x - 4 + 4x^2 - 3x = 0
\Rightarrow 4x^2 - 6x - 4 = 0
\]
Divide by 2:
\[
2x^2 - 3x - 2 = 0
\]
Solve using quadratic formula:
\[
x = \frac{3 \pm \sqrt{(-3)^2 - 4(2)(-2)}}{2(2)}
= \frac{3 \pm \sqrt{9 + 16}}{4}
= \frac{3 \pm \sqrt{25}}{4}
= \frac{3 \pm 5}{4}
\]
So the roots are:
\[
\alpha = \frac{8}{4} = 2, \quad \beta = \frac{-2}{4} = -\frac{1}{2}
\]
Now compute:
\[
4(\alpha^2 + \beta^2) = 4\left(2^2 + \left(-\frac{1}{2}\right)^2\right)
= 4\left(4 + \frac{1}{4}\right)
= 4 \cdot \frac{17}{4} = 17
\]