Let us simplify the function and test its parity:
Given:
\[
f(x) = \log\left(\left(\frac{2x^2 - 3}{x}\right) + \sqrt{\frac{4x^4 - 11x^2 + 9}{|x|}}\right)
\]
Let us analyze each component:
1. The first part:
\[
\frac{2x^2 - 3}{x}
= \frac{2x^2}{x} - \frac{3}{x}
= 2x - \frac{3}{x}
\]
2. The second part:
\[
\sqrt{\frac{4x^4 - 11x^2 + 9}{|x|}} \quad \text{is defined for } x \ne 0 \text{ and is even in behavior, since it involves } x^2, x^4, \text{ and } |x|.
\]
Now consider:
\[
f(-x) = \log\left(\left(\frac{2(-x)^2 - 3}{-x}\right) + \sqrt{\frac{4(-x)^4 - 11(-x)^2 + 9}{|-x|}}\right)
\]
\[
= \log\left(\left(\frac{2x^2 - 3}{-x}\right) + \sqrt{\frac{4x^4 - 11x^2 + 9}{|x|}}\right)
\]
\[
= \log\left(-\left(\frac{2x^2 - 3}{x}\right) + \sqrt{\frac{4x^4 - 11x^2 + 9}{|x|}}\right)
\]
Now compare with original:
\[
f(-x) = \log\left(-\left(\frac{2x^2 - 3}{x}\right) + \sqrt{\frac{4x^4 - 11x^2 + 9}{|x|}}\right)
= -f(x)
\]
Thus, \( f(-x) = -f(x) \), which proves that \( f(x) \) is an odd function.