First, calculate the values of a, b, and c:
\(a = \sin(\pi/6) = \sin(30^\circ) = 1/2\).
\(b = \cos(\pi/4) = \cos(45^\circ) = 1/\sqrt{2}\).
\(c = \cot(\pi/2) = \cot(90^\circ) = \frac{\cos(90^\circ)}{\sin(90^\circ)} = \frac{0}{1} = 0\).
Now, calculate \(a^2, b^2, c^2\):
\(a^2 = (1/2)^2 = 1/4\).
\(b^2 = (1/\sqrt{2})^2 = 1/2\).
\(c^2 = (0)^2 = 0\).
Substitute these into matrix A:
\(A = \begin{bmatrix} b^2+c^2 & a^2 & a^2
b^2 & c^2+a^2 & b^2
c^2 & c^2 & a^2+b^2 \end{bmatrix} = \begin{bmatrix} 1/2+0 & 1/4 & 1/4
1/2 & 0+1/4 & 1/2
0 & 0 & 1/4+1/2 \end{bmatrix}\)
\[ A = \begin{bmatrix} 1/2 & 1/4 & 1/4
1/2 & 1/4 & 1/2
0 & 0 & 3/4 \end{bmatrix} \]
A matrix is singular if its determinant is 0. Let's calculate det(A):
\(\det(A) = (1/2) \begin{vmatrix} 1/4 & 1/2
0 & 3/4 \end{vmatrix} - (1/4) \begin{vmatrix} 1/2 & 1/2
0 & 3/4 \end{vmatrix} + (1/4) \begin{vmatrix} 1/2 & 1/4
0 & 0 \end{vmatrix}\)
\(= (1/2) ((1/4)(3/4) - (1/2)(0)) - (1/4) ((1/2)(3/4) - (1/2)(0)) + (1/4) ((1/2)(0) - (1/4)(0))\)
\(= (1/2) (3/16 - 0) - (1/4) (3/8 - 0) + (1/4) (0)\)
\(= (1/2)(3/16) - (1/4)(3/8) + 0\)
\(= 3/32 - 3/32 = 0\).
Since \(\det(A) = 0\), the matrix A is a singular matrix.
This matches option (c).
Is it symmetric? \(A^T = \begin{bmatrix} 1/2 & 1/2 & 0
1/4 & 1/4 & 0
1/4 & 1/2 & 3/4 \end{bmatrix}\). \(A \neq A^T\). Not symmetric.
Not skew-symmetric (diagonal elements not all zero).
\[ \boxed{\text{Singular matrix}} \]