Given \(|z|^2w - |w|^2z = z - w\).
We know \(|z|^2 = z\bar{z}\) and \(|w|^2 = w\bar{w}\).
Substitute these into the equation:
\(z\bar{z}w - w\bar{w}z = z - w\)
Rearrange the terms:
\(z\bar{z}w + w = w\bar{w}z + z\)
Factor out \(w\) from LHS and \(z\) from RHS:
\(w(z\bar{z} + 1) = z(w\bar{w} + 1)\)
\(w(|z|^2 + 1) = z(|w|^2 + 1)\)
This doesn't directly lead to the options easily.
Let's try another rearrangement from the original equation:
\(|z|^2w + w = |w|^2z + z\)
\(w( |z|^2 + 1) = z( |w|^2 + 1)\)
Consider the given equation again: \(|z|^2w - |w|^2z = z - w\).
\(|z|^2w + w = |w|^2z + z\)
\(w(1+|z|^2) = z(1+|w|^2)\).
This is the same.
Let's group terms with z and w:
\(|z|^2w + w = |w|^2z + z\)
\(w - z = |w|^2z - |z|^2w\)
\(w - z = z(w\bar{w}) - w(z\bar{z})\)
If \(w-z \neq 0\) (since \(z, w\) are distinct).
The original equation was \(|z|^2w - |w|^2z = z - w\).
\(-(w-z) = z\bar{z}w - w\bar{w}z\)
If we divide by \(zw\) (since \(z,w\) are non-zero):
\(\frac{|z|^2}{z} - \frac{|w|^2}{w} = \frac{1}{w} - \frac{1}{z}\)
\(\bar{z} - \bar{w} = \frac{1}{w} - \frac{1}{z}\)
\(\overline{(z-w)} = \frac{z-w}{zw}\)
If \(z-w \neq 0\), we can divide by \(z-w\):
\(\frac{\overline{(z-w)}}{z-w} = \frac{1}{zw}\).
Let \(X = z-w\). Then \(\frac{\bar{X}}{X} = \frac{1}{zw}\).
We know \(X\bar{X} = |X|^2\), so \(\bar{X} = |X|^2/X\).
\(\frac{|X|^2/X}{X} = \frac{|X|^2}{X^2} = \frac{1}{zw}\).
This is \( \frac{|z-w|^2}{(z-w)^2} = \frac{1}{zw} \). This seems complicated.
Let's go back to \(z\bar{z}w - w\bar{w}z = z - w\).
\(z\bar{z}w - z = w\bar{w}z - w\)
\(z(\bar{z}w - 1) = w(\bar{w}z - 1)\)
\(z(\bar{z}w - 1) = w(\overline{z\bar{w}} - 1)\)
This form is not useful unless \(z\bar{w}\) is real.
Alternative approach from \(|z|^2w - |w|^2z = z - w\):
\(|z|^2w - z = |w|^2z - w\)
\(z(\frac{|z|^2w}{z} - 1) = w(\frac{|w|^2z}{w} - 1)\)
\(z(\bar{z}w - 1) = w(z\bar{w} - 1)\).
This is the same as before.
If \(z\bar{w} - 1 = 0\), then \(z\bar{w} = 1\).
If this is true, then LHS = \(z(1-1)=0\). RHS = \(w(1-1)=0\). So \(0=0\).
This means \(z\bar{w}=1\) is a possible solution, provided \(z, w\) are distinct and non-zero.
If \(z\bar{w}=1\), then \(\bar{w} = 1/z\). So \(w = 1/\bar{z}\).
Let's check if this satisfies the original equation:
\(|z|^2(1/\bar{z}) - |1/\bar{z}|^2 z = z - 1/\bar{z}\)
\(z\bar{z}(1/\bar{z}) - (1/|z|^2) z = z - 1/\bar{z}\)
\(z - z/|z|^2 = z - 1/\bar{z}\)
This requires \(z/|z|^2 = 1/\bar{z}\).
\(z/(z\bar{z}) = 1/\bar{z} \Rightarrow 1/\bar{z} = 1/\bar{z}\). This is true.
So \(z\bar{w}=1\) is a valid solution.
This matches option (c).
\[ \boxed{z\bar{w} = 1} \]