If \(\alpha, \beta\) are roots of \(ax^2+bx+c=0\), then \(\alpha+\beta = -b/a\) and \(\alpha\beta = c/a\).
To form a new quadratic equation with roots \(k\alpha, k\beta\):
Let the new variable be \(y = kx\), so \(x = y/k\). Substitute this into the original equation \(a(y/k)^2 + b(y/k) + c = 0\).
\(a y^2/k^2 + by/k + c = 0\). Multiply by \(k^2\): \(ay^2 + bky + ck^2 = 0\).
Replace y with x: \(ax^2 + bkx + ck^2 = 0\).
In this problem, \(k=\sqrt{5}\). So, \(k^2=5\).
The new equation is \(ax^2 + b(\sqrt{5})x + c(\sqrt{5})^2 = 0 \Rightarrow ax^2 + \sqrt{5}bx + 5c = 0\).