Properties of cube roots of unity:
1. \(1 + \omega + \omega^2 = 0\)
2. \(\omega^3 = 1\)
From (1), we can derive:
\(1 + \omega^2 = -\omega\)
\(1 + \omega = -\omega^2\)
Consider the first term: \((1-\omega+\omega^2)^5\).
Substitute \(1+\omega^2 = -\omega\):
\(( (1+\omega^2) - \omega )^5 = (-\omega - \omega)^5 = (-2\omega)^5 = (-2)^5 \omega^5 = -32 \omega^5\).
Since \(\omega^3 = 1\), then \(\omega^5 = \omega^3 \cdot \omega^2 = 1 \cdot \omega^2 = \omega^2\).
So, the first term is \(-32\omega^2\).
Consider the second term: \((1+\omega-\omega^2)^5\).
Substitute \(1+\omega = -\omega^2\):
\(( (1+\omega) - \omega^2 )^5 = (-\omega^2 - \omega^2)^5 = (-2\omega^2)^5 = (-2)^5 (\omega^2)^5 = -32 \omega^{10}\).
Since \(\omega^3 = 1\), then \(\omega^{10} = (\omega^3)^3 \cdot \omega = 1^3 \cdot \omega = \omega\).
So, the second term is \(-32\omega\).
Now, sum the two terms:
\( (1-\omega+\omega^2)^5 + (1+\omega-\omega^2)^5 = -32\omega^2 - 32\omega \)
\( = -32(\omega^2 + \omega) \).
From \(1 + \omega + \omega^2 = 0\), we have \(\omega + \omega^2 = -1\).
So, the sum is \(-32(-1) = 32\).
This matches option (d).
\[ \boxed{32} \]