Let \(Z = \frac{3+2i\sin\theta}{1-2i\sin\theta}\).
For Z to be real, its imaginary part must be zero.
Multiply the numerator and denominator by the conjugate of the denominator:
Conjugate of \(1-2i\sin\theta\) is \(1+2i\sin\theta\).
\(Z = \frac{(3+2i\sin\theta)(1+2i\sin\theta)}{(1-2i\sin\theta)(1+2i\sin\theta)}\)
Denominator = \(1^2 - (2i\sin\theta)^2 = 1 - (4i^2\sin^2\theta) = 1 - (-4\sin^2\theta) = 1+4\sin^2\theta\).
Numerator = \(3(1+2i\sin\theta) + 2i\sin\theta(1+2i\sin\theta)\)
\( = 3 + 6i\sin\theta + 2i\sin\theta + 4i^2\sin^2\theta \)
\( = 3 + 8i\sin\theta - 4\sin^2\theta \)
\( = (3-4\sin^2\theta) + i(8\sin\theta) \).
So, \(Z = \frac{(3-4\sin^2\theta) + i(8\sin\theta)}{1+4\sin^2\theta} = \frac{3-4\sin^2\theta}{1+4\sin^2\theta} + i \frac{8\sin\theta}{1+4\sin^2\theta}\).
For Z to be real, the imaginary part must be zero:
\( \text{Im}(Z) = \frac{8\sin\theta}{1+4\sin^2\theta} = 0 \).
Since \(1+4\sin^2\theta\) is always positive (as \(\sin^2\theta \ge 0\)), we must have the numerator equal to zero:
\(8\sin\theta = 0 \Rightarrow \sin\theta = 0\).
The general solution for \(\sin\theta = 0\) is \(\theta = n\pi\), where \(n\) is an integer (\(n \in Z\)).
This matches option (d).
\[ \boxed{\theta = n\pi \text{ for } n \in Z} \]