This is a limit form of a Riemann sum:
\[
\int_0^1 f(x)\, dx = \lim_{n \to \infty} \sum_{r=1}^{n} f\left(\frac{r}{n}\right)\cdot \frac{1}{n}
\]
Let \( x = \frac{r}{n} \), then:
- \( r = nx \)
- \( r + n = n(1 + x) \)
- \( 2r + r = 2nx + r \approx 2n x + n x = n(2x + x) = n(2x + x) \)
From the pattern, the term becomes:
\[
\frac{n}{(n + r)\sqrt{2n + r}} \Rightarrow \frac{1}{(1 + x)\sqrt{x^2 + 2x}}
\]
So, the function under the integral is:
\[
f(x) = \frac{1}{(1 + x)\sqrt{x^2 + 2x}}
\]