>
Exams
>
Mathematics
>
Integration
>
evaluate int frac e tan 1 x 1 x 2 left left sec 1
Question:
Evaluate: $$ \int \frac{e^{\tan^{-1}x}}{1+x^2} \left[\left(\sec^{-1}(\sqrt{1+x^2})\right)^2 + \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right)\right] dx $$
Show Hint
Look for substitution when \( \frac{1}{1+x^2} \) appears: it's typically \( \frac{d}{dx}(\tan^{-1}x) \).
AP EAPCET - 2022
AP EAPCET
Updated On:
May 20, 2025
\( e^{\tan^{-1}x} \left( \tan^{-1}x \right)^2 + C \)
\( e^{\tan^{-1}x} \left( \sec^{-1}x \right)^2 + C \)
\( e^{\tan^{-1}x} \left( \sec^{-1}(\sqrt{1+x^2}) \right) + C \)
\( e^{\tan^{-1}x} \left( \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \right) + C \)
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Let: \[ I = \int \frac{e^{\tan^{-1}x}}{1+x^2} \left[\left(\sec^{-1}(\sqrt{1+x^2})\right)^2 + \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right)\right] dx \] Now observe: - \( \frac{1}{1+x^2} \) is the derivative of \( \tan^{-1}x \)
- Let \( t = \tan^{-1}x \Rightarrow x = \tan t \Rightarrow dx = \sec^2 t dt \)
- Also note:
- \( \sec^{-1}(\sqrt{1+x^2}) = \sec^{-1}(\sqrt{1+\tan^2 t}) = \sec^{-1}(\sec t) = t \)
- So \( \left( \sec^{-1}(\sqrt{1+x^2}) \right)^2 = t^2 \)
- \( \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) = \cos^{-1}(\cos 2t) = 2t \)
So, the expression becomes: \[ I = \int e^t (t^2 + 2t) dt = \int e^t t^2 dt + \int 2t e^t dt \Rightarrow \text{Use integration by parts or shortcut:} \] We know: \[ \int e^t t^2 dt = e^t (t^2 - 2t + 2) + C,\quad \int 2t e^t dt = 2e^t(t - 1) \] Add: \[ e^t (t^2 - 2t + 2) + 2e^t(t - 1) = e^t (t^2 - 2t + 2 + 2t - 2) = e^t t^2 \Rightarrow I = e^{\tan^{-1}x} \cdot (\tan^{-1}x)^2 + C \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Integration
Evaluate
\( \int_0^{\frac{\pi}{2}} \frac{x}{\cos x + \sin x} \, dx \)
CBSE CLASS XII - 2025
Mathematics
Integration
View Solution
Evaluate :
\[ I = \int_0^{\frac{\pi}{4}} \frac{dx}{\cos^3 x \sqrt{2 \sin 2x}} \]
CBSE CLASS XII - 2025
Mathematics
Integration
View Solution
Find:
\[ \int \frac{\sqrt{x}}{1 + \sqrt{x^{3/2}}} \, dx \]
CBSE CLASS XII - 2025
Mathematics
Integration
View Solution
Evaluate the integral:
\[ \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \]
MHT CET - 2025
Mathematics
Integration
View Solution
$ \int \frac{e^{10 \log x} - e^{8 \log x}}{e^{6 \log x} - e^{5 \log x}} \, dx$ is equal to :
CBSE CLASS XII - 2025
Mathematics
Integration
View Solution
View More Questions
Questions Asked in AP EAPCET exam
If a steel rod of a radius 10 mm and length 80 cm is streched by a force of 66 kN along its length, then the longitudinal stress on the rod is nearly
AP EAPCET - 2025
mechanical properties of solids
View Solution
The number of all five-letter words (with or without meaning) having at least one repeated letter that can be formed by using the letters of the word INCONVENIENCE is:
AP EAPCET - 2025
Binomial Expansion
View Solution
If \(\alpha, \beta, \gamma\) are the roots of the equation \[ x^3 - 13x^2 + kx + 189 = 0 \] such that \(\beta - \gamma = 2\), then find the ratio \(\beta + \gamma : k + \alpha\).
AP EAPCET - 2025
Algebra
View Solution
In a container of volume 16.62 m$^3$ at 0°C temperature, 2 moles of oxygen, 5 moles of nitrogen and 3 moles of hydrogen are present, then the pressure in the container is (Universal gas constant = 8.31 J/mol K)
AP EAPCET - 2025
Ideal gas equation
View Solution
If
\[ A = \begin{bmatrix} x & 2 & 1 \\ -2 & y & 0 \\ 2 & 0 & -1 \end{bmatrix}, \] where \( x \) and \( y \) are non-zero real numbers, trace of \( A = 0 \), and determinant of \( A = -6 \), then the minor of the element 1 of \( A \) is:}
AP EAPCET - 2025
Complex numbers
View Solution
View More Questions