\( \begin{bmatrix} -15 \\ 30 \\ 75 \end{bmatrix} \)
If \( AX = D \) represents the system of simultaneous linear equations: \[ \begin{aligned} x + y + z &= 6 \quad \text{(1)} \\ 5x - y + 2z &= 3 \quad \text{(2)} \\ 2x + y - z &= -5 \quad \text{(3)} \end{aligned} \] then find \( (\text{Adj } A) D \).
Let the coefficient matrix \( A \), the variable matrix \( X \), and the constant matrix \( D \) be: \[ A = \begin{bmatrix} 1 & 1 & 1 \\ 5 & -1 & 2 \\ 2 & 1 & -1 \end{bmatrix}, \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad D = \begin{bmatrix} 6 \\ 3 \\ -5 \end{bmatrix} \]
We are to compute \( (\text{Adj } A) D \). This requires finding the adjugate of matrix \( A \) and multiplying it by matrix \( D \).
First, compute the cofactor matrix of \( A \): \[ \begin{aligned} C_{11} &= \det \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} = -1 \\ C_{12} &= -\det \begin{bmatrix} 5 & 2 \\ 2 & -1 \end{bmatrix} = 9 \\ C_{13} &= \det \begin{bmatrix} 5 & -1 \\ 2 & 1 \end{bmatrix} = 7 \\ C_{21} &= -\det \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = 2 \\ C_{22} &= \det \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} = -3 \\ C_{23} &= -\det \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = 1 \\ C_{31} &= \det \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} = 3 \\ C_{32} &= -\det \begin{bmatrix} 1 & 1 \\ 5 & 2 \end{bmatrix} = 3 \\ C_{33} &= \det \begin{bmatrix} 1 & 1 \\ 5 & -1 \end{bmatrix} = -6 \end{aligned} \]
The cofactor matrix of \( A \) is: \[ \begin{bmatrix} -1 & 9 & 7 \\ 2 & -3 & 1 \\ 3 & 3 & -6 \end{bmatrix} \] Taking the transpose, the adjugate of \( A \) is: \[ \text{Adj}(A) = \begin{bmatrix} -1 & 2 & 3 \\ 9 & -3 & 3 \\ 7 & 1 & -6 \end{bmatrix} \]
Now compute \( \text{Adj}(A) \cdot D \): \[ \text{Adj}(A) \cdot D = \begin{bmatrix} -1 & 2 & 3 \\ 9 & -3 & 3 \\ 7 & 1 & -6 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ 3 \\ -5 \end{bmatrix} = \begin{bmatrix} -6 + 6 - 15 \\ 54 - 9 - 15 \\ 42 + 3 + 30 \end{bmatrix} = \begin{bmatrix} -15 \\ 30 \\ 75 \end{bmatrix} \]
Final Answer: \[ (\text{Adj } A) D = \begin{bmatrix} -15 \\ 30 \\ 75 \end{bmatrix} \]
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is: