We are given:
We aim to compute the total number of distinct intersection points.
If all 37 lines intersect pairwise without concurrency:
\[ \text{Total Intersections} = \binom{37}{2} = \frac{37 \cdot 36}{2} = 666 \]
\[ \binom{13}{2} = \frac{13 \cdot 12}{2} = 78 \] But since all 13 lines intersect at point A, they produce only 1 intersection.
So, we subtract:
\[ 78 - 1 = 77 \]
\[ \binom{11}{2} = \frac{11 \cdot 10}{2} = 55 \] But all 11 lines intersect at point B, producing only 1 intersection.
So, we subtract:
\[ 55 - 1 = 54 \]
\[ \text{Valid Intersections} = 666 - 77 - 54 = \boxed{535} \]
\[ \boxed{535 \text{ distinct points of intersection}} \]
Match List-I with List-II
List-I | List-II |
---|---|
(A) \(^{8}P_{3} - ^{10}C_{3}\) | (I) 6 |
(B) \(^{8}P_{5}\) | (II) 21 |
(C) \(^{n}P_{4} = 360,\) then find \(n\). | (III) 216 |
(D) \(^{n}C_{2} = 210,\) find \(n\). | (IV) 6720 |
Choose the correct answer from the options given below: