>
AP EAPCET
>
Mathematics
List of top Mathematics Questions asked in AP EAPCET
If \( \overline{a} = 2\overline{i} - 3\overline{j} + 5\overline{k} \) and \( \overline{b} = -\overline{i} + 3\overline{j} + 3\overline{k} \) are two vectors, then the vector of magnitude 28 units in the direction of the vector \( \overline{a} - \overline{b} \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Vectors
If the median AD of the triangle ABC is bisected at E and BE meets AC in F, then AF : AC =
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
In \( \triangle ABC \), if \( a = 8 \), \( b = 10 \), \( c = 12 \), then \( \frac{r}{R} = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
\(\operatorname{Tanh}^{-1}(\sin\theta) =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
The number of solutions of \( \tan^{-1} 1 + \frac{1}{2} \cos^{-1} x^2 - \tan^{-1}\left(\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}}\right) = 0 \) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometry
The general solution satisfying both the equations \(\sin x = -\frac{3}{5}\) and \(\cos x = -\frac{4}{5}\) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometry
If \(\cos\theta = -\frac{3}{5}\) and \(\theta\) does not lie in second quadrant, then \(\tan\frac{\theta}{2} =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometry
If \( \sqrt{3} \cos \theta + \sin \theta > 0 \), then the range of \( \theta \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometry
\( \csc 48^\circ + \csc 96^\circ + \csc 192^\circ + \csc 384^\circ = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometry
If \( \frac{3x+1}{(x-1)(x^2+2)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+2} \), then \( 5(A-B) = \)?
AP EAPCET - 2025
AP EAPCET
Mathematics
Functions
\( 1 + \frac{4}{15} + \frac{4 \cdot 10}{15 \cdot 30} + \frac{4 \cdot 10 \cdot 16}{15 \cdot 30 \cdot 45} + \cdots \infty \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Exponential and Logarithmic Functions
If \(C_0, C_1, C_2, \dots, C_n\) are the binomial coefficients in the expansion of \((1 + x)^n\), then \((C_0 + C_1) - (C_2 + C_3) + (C_4 + C_5) - (C_6 + C_7) + \dots = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
The number of ways in which a committee of 7 members can be formed from 6 teachers, 5 fathers and 4 students in such a way that at least one from each group is included and teachers form the majority among them, is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Combinations
The number of ways of forming the ordered pairs (p, q) such that p>q by choosing p and q from the first 50 natural numbers is:
AP EAPCET - 2025
AP EAPCET
Mathematics
permutations and combinations
If all possible 4-digit numbers are formed by choosing 4 different digits from the given digits $ 1, 2, 3, 5, 8 $, then the sum of all such 4-digit numbers is:
AP EAPCET - 2025
AP EAPCET
Mathematics
permutations and combinations
The cubic equation whose roots are the squares of the roots of the equation \( x^3 - 2x^2 + 3x - 4 = 0 \) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Polynomials
If the roots of the equation \(x^2 + 2ax + b = 0\) are real, distinct and differ utmost by \(2m\), then b lies in the interval
AP EAPCET - 2025
AP EAPCET
Mathematics
Quadratic Equations
Let \((a-3)x^2 + 12x + (a+6) > 0, \forall x \in \mathbb{R} \text{ and } a \in (t, \infty)\). If \(\alpha\) is the least positive integral value of \(a\), then the roots of \((\alpha-3)x^2 + 12x + (\alpha+2) = 0\) are:
AP EAPCET - 2025
AP EAPCET
Mathematics
Quadratic Equations
The sum of the squares of the imaginary roots of the equation $ z^8 - 20z^4 + 64 = 0 $ is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
If the least positive integer \( n \) satisfying the equation \(\left(\frac{\sqrt{3}+i}{\sqrt{3}-i}\right)^n = -1\) is \( p \) and the least positive integer \( m \) satisfying the equation \(\left(\frac{1-\sqrt{3}i}{1+\sqrt{3}i}\right)^m = \text{cis}\left(\frac{2\pi}{3}\right)\) is \( q \), then \(\sqrt{p^2 + q^2}\) is equal to:
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
If \( z \) is a complex number such that \( \frac{z-1}{z-i} \) is purely imaginary and the locus of \( z \) represents a circle with center \( (\alpha, \beta) \) and radius \( r \), then the value of \( \frac{\alpha}{\beta} + \frac{\beta}{\alpha} \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
The rank of the matrix \( \begin{bmatrix} 2 & -3 & 4 & 0 \\ 5 & -4 & 2 & 1 \\ 1 & -3 & 5 & -4 \end{bmatrix} \) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices and Determinants
If \( \alpha \) is a real root of the equation \( x^3 + 6x^2 + 5x - 42 = 0 \), then the determinant of the matrix
\[ \begin{bmatrix} \alpha - 1 & \alpha + 1 & \alpha + 2 \\ \alpha - 2 & \alpha + 3 & \alpha - 3 \\ \alpha + 4 & \alpha - 4 & \alpha + 5 \end{bmatrix} \]
is
Options:
AP EAPCET - 2025
AP EAPCET
Mathematics
Determinants
If \( P = \begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix} \) is the adjoint of a matrix \( A \) and \( \det(A) = 4 \), then the value of \( \alpha \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices and Determinants
If \( 11^{12} - 11^2 = k(5 \times 10^9 + 6 \times 10^9 + 33 \times 10^8 + 110 \times 10^7 + \ldots + 33) \), then find the value of \( k \).
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebraic Expressions
Prev
1
...
24
25
26
27
28
...
97
Next