Step 1: Determine Total Number of Permutations
We have 5 distinct digits \(\{1, 2, 3, 5, 8\}\) and need to form 4-digit numbers using 4 different digits. The number of such permutations is: \[ P(5,4) = 5 \times 4 \times 3 \times 2 = 120 \text{ numbers}. \] Step 2: Calculate Frequency of Each Digit in Each Place
For any given digit (say \(1\)), it will appear in: Thousands place: \(P(4,3) = 24\) times
Hundreds place: \(P(4,3) = 24\) times
Tens place: \(P(4,3) = 24\) times
Units place: \(P(4,3) = 24\) times
This symmetry holds for all digits.
Step 3: Compute Sum for Each Place Value
The sum contributed by each digit in each place is: \[ \text{Sum per digit} = \text{Digit} \times 24 \times \text{Place value}. \] Total sum: \[ \sum_{\text{all digits}} \sum_{\text{all places}} (\text{Digit} \times 24 \times \text{Place value}). \] Breaking it down by place values:
Step 4: Calculate Total Sum
Adding all place contributions: \[ 456000 + 45600 + 4560 + 456 = 506616. \] Conclusion
The sum of all possible 4-digit numbers formed is \(\boxed{506616}\).
Match List-I with List-II
List-I | List-II |
---|---|
(A) \(^{8}P_{3} - ^{10}C_{3}\) | (I) 6 |
(B) \(^{8}P_{5}\) | (II) 21 |
(C) \(^{n}P_{4} = 360,\) then find \(n\). | (III) 216 |
(D) \(^{n}C_{2} = 210,\) find \(n\). | (IV) 6720 |
Choose the correct answer from the options given below: