Step 1: Find the roots of the given cubic equation.
The given equation is \( x^3 - 2x^2 + 3x - 4 = 0 \). Let the roots be \( \alpha, \beta, \gamma \). Using Vieta's formulas for a cubic equation \( x^3 + ax^2 + bx + c = 0 \):
\( \alpha + \beta + \gamma = -a = -(-2) = 2 \)
\( \alpha\beta + \beta\gamma + \gamma\alpha = b = 3 \)
\( \alpha\beta\gamma = -c = -(-4) = 4 \)
We need to find the cubic equation whose roots are \( \alpha^2, \beta^2, \gamma^2 \).
Step 2: Form the new cubic equation.
The new cubic equation with roots \( \alpha^2, \beta^2, \gamma^2 \) can be written as:
\[ (x - \alpha^2)(x - \beta^2)(x - \gamma^2) = 0 \] This expands to:
\[ x^3 - (\alpha^2 + \beta^2 + \gamma^2)x^2 + (\alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2)x - \alpha^2\beta^2\gamma^2 = 0 \] We need to compute the coefficients using the relationships from Vieta's formulas.
Step 3: Compute \( \alpha^2 + \beta^2 + \gamma^2 \).
Using the identity:
\[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \] Substitute the known values:
\[ \alpha^2 + \beta^2 + \gamma^2 = (2)^2 - 2(3) = 4 - 6 = -2 \]
Step 4: Compute \( \alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 \).
First, find \( (\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2 \): \[ (\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2 = (\alpha\beta + \beta\gamma + \gamma\alpha)^2 - 2\alpha\beta\gamma(\alpha + \beta + \gamma) \] Substitute: \[ (\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2 = (3)^2 - 2(4)(2) = 9 - 16 = -7 \] So, \( \alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 = -7 \).
Step 5: Compute \( \alpha^2\beta^2\gamma^2 \).
Since \( \alpha\beta\gamma = 4 \), we have:
\[ \alpha^2\beta^2\gamma^2 = (\alpha\beta\gamma)^2 = (4)^2 = 16 \] Thus, the constant term in the new equation is \( -\alpha^2\beta^2\gamma^2 = -16 \).
Step 6: Form the new cubic equation.
Using the computed sums:
Coefficient of \( x^2 \): \( -(\alpha^2 + \beta^2 + \gamma^2) = -(-2) = 2 \)
Coefficient of \( x \): \( \alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 = -7 \)
Constant term: \( -\alpha^2\beta^2\gamma^2 = -16 \) The new cubic equation is: \[ x^3 + 2x^2 - 7x - 16 = 0 \]
Step 7: Match with the options.
The equation \( x^3 + 2x^2 - 7x - 16 = 0 \) matches option (2).
Final Answer:
\[ \boxed{x^3 + 2x^2 - 7x - 16 = 0} \]
Let \( M \) be a \( 7 \times 7 \) matrix with entries in \( \mathbb{R} \) and having the characteristic polynomial \[ c_M(x) = (x - 1)^\alpha (x - 2)^\beta (x - 3)^2, \] where \( \alpha>\beta \). Let \( {rank}(M - I_7) = {rank}(M - 2I_7) = {rank}(M - 3I_7) = 5 \), where \( I_7 \) is the \( 7 \times 7 \) identity matrix.
If \( m_M(x) \) is the minimal polynomial of \( M \), then \( m_M(5) \) is equal to __________ (in integer).
In the given figure, graph of polynomial \(p(x)\) is shown. Number of zeroes of \(p(x)\) is
