>
AP EAPCET
>
Mathematics
List of top Mathematics Questions asked in AP EAPCET
If the position vectors of the vertices A, B, C of a triangle are $3\mathbf{i} + 4\mathbf{j} - \mathbf{k}$, $\mathbf{i} + 3\mathbf{j} + \mathbf{k}$, and $5(\mathbf{i} + \mathbf{j} + \mathbf{k})$ respectively, then the magnitude of the altitude drawn from A onto the side BC is
AP EAPCET - 2025
AP EAPCET
Mathematics
Vectors
If the vectors $2\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}$, $-\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, and $p\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ are coplanar, then the unit vector in the direction of the vector $9p\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}$ is
AP EAPCET - 2025
AP EAPCET
Mathematics
Vectors
Assertion (A): For the lines $\mathbf{r} = \mathbf{a} + t \mathbf{b}$ and $\mathbf{r} = \mathbf{p} + s \mathbf{q}$, if $(\mathbf{a} - \mathbf{p}) \cdot (\mathbf{b} \times \mathbf{q}) \neq 0$, then the two lines are coplanar. Reason (R): $|(\mathbf{a} - \mathbf{p}) \cdot (\mathbf{b} \times \mathbf{q})|$ is $|\mathbf{b} \times \mathbf{q}|$ times the shortest distance between the lines $\mathbf{r} = \mathbf{a} + t \mathbf{b}$ and $\mathbf{r} = \mathbf{p} + s \mathbf{q}$.
AP EAPCET - 2025
AP EAPCET
Mathematics
Vectors
In a $\triangle ABC$, $\frac{2(r_1 + r_3)}{a c (1 + \cos B)} =$
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometry
In a triangle ABC, if $a, b, c$ are in arithmetic progression and the angle $A$ is twice the angle $C$, then $\cos A : \cos B : \cos C =$
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometry
In a triangle ABC, if A, B, and C are in arithmetic progression, $r_3 = r_1 r_2$, and $c = 10$, then $a^2 + b^2 + c^2 =$
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometry
If $\frac{3x^2 - 7x + 1}{(x - 2)^3} = \frac{A}{x - 2} + \frac{B}{(x - 2)^2} + \frac{C}{(x - 2)^3}$, then $A(B + C + D + E) =$
AP EAPCET - 2025
AP EAPCET
Mathematics
Partial Fractions
If $\cot(\cos^{-1} x) = \sec\left(\tan^{-1}\left(\frac{a}{\sqrt{b^2 - a^2}}\right)\right)$, $b>a$, then $x =$
AP EAPCET - 2025
AP EAPCET
Mathematics
Inverse Trigonometric Functions
$\cos(13^\circ)\sin(17^\circ)\sin(21^\circ)\cos(47^\circ) =$
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
$\sin\left(\frac{\pi}{5}\right) + \sin\left(\frac{2\pi}{5}\right) + \sin\left(\frac{3\pi}{5}\right) + \sin\left(\frac{4\pi}{5}\right) =$
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
The sum of the solutions of $\cos x \sqrt{16 \sin^2 x} = 1$ in $(0, 2\pi)$ is
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
The number of ways in which a cricket team of 11 members can be formed out of 6 batsmen, 6 bowlers, 4 all-rounders, and 4 wicket-keepers by selecting at least 4 batsmen, at least 3 bowlers, at least 2 all-rounders, and only one wicket-keeper is
AP EAPCET - 2025
AP EAPCET
Mathematics
permutations and combinations
All letters of the word `AGAIN' are permuted in all possible ways, and the words so formed (with or without meaning) are written as in a dictionary. Then the $50^{th}$ word is
AP EAPCET - 2025
AP EAPCET
Mathematics
permutations and combinations
The number of integers between 10 and 10,000 such that in every integer every digit is greater than its immediate preceding digit, is
AP EAPCET - 2025
AP EAPCET
Mathematics
Combinatorics
If $y = \frac{3}{4} + \frac{3 \cdot 5}{4 \cdot 8} + \frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12} + ... \infty$, then
AP EAPCET - 2025
AP EAPCET
Mathematics
Binomial theorem
Sum of the coefficients of $x^4$ and $x^6$ in the expansion of $(1 + x - x^2)^6$ is
AP EAPCET - 2025
AP EAPCET
Mathematics
Binomial theorem
The set of all real values of $x$ for which $\frac{x^2-1}{(x-4)(x-3)} \ge 1$ is
AP EAPCET - 2025
AP EAPCET
Mathematics
Quadratic Equations
If $\alpha$, $\beta$, and $\gamma$ are the roots of the equation $2x^3 + 3x^2 - 5x - 7 = 0$, then $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} =$
AP EAPCET - 2025
AP EAPCET
Mathematics
Polynomials
If the order and degree of the differential equation \(x \frac{d^2 y}{dx^2} = \left(1 + \left(\frac{d^2 y}{dx^2}\right)^2\right)^{-1/2}\) are \(k\) and \(l\) respectively, then \(k, l\) are the roots of
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
The general solution of the differential equation \( \left(x - (x + y)\log(x + y)\right) dx + x\,dy = 0 \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
The equation of the curve passing through the point \( (0, \pi) \) and satisfying the differential equation \( ydx = (x + y^3 \cos y)dy \) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
Area of the region (in sq. units) bounded by the curve $ y = x^2 - 5x + 4 $, $ x = 0 $, $ x = 2 $, and the X-axis is
AP EAPCET - 2025
AP EAPCET
Mathematics
Calculus
Evaluate the integral \( \displaystyle \int_{1/5}^{1/2} \frac{\sqrt{x - x^2}}{x^3} \, dx \):
AP EAPCET - 2025
AP EAPCET
Mathematics
Calculus
\( \int_{-\pi/2}^{\pi/2} \sin^2 x \cos^2 x (\sin x + \cos x) \, dx = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Calculus
If \(\int \frac{1}{((x+4)^3 (x+1)^5)^{1/4}} \, dx = A \cdot \left(\frac{x+4}{x+1}\right)^n + c\), then
AP EAPCET - 2025
AP EAPCET
Mathematics
Calculus
Prev
1
...
22
23
24
25
26
...
97
Next