Let \( \vec{a}, \vec{b}, \vec{c} \) be coinitial vectors and \( \vec{a} = 2\hat{i} - \hat{j} + 5\hat{k}, \vec{b} = 3\hat{i} + 7\hat{j} - \hat{k} \). If \( \cos(\theta) = 0 \), where \( \theta \) is the angle between \( \vec{a} \) and \( \vec{b} \), and \( \vec{c} \) is the vector along the bisector of the angle \( \angle ABC \), then the vector \( \mathbf{c} \) is: