>
AP EAPCET
>
Mathematics
List of top Mathematics Questions asked in AP EAPCET
In a triangle ABC, if \((r_1 - r_3)(r_1 - r_2) - 2r_2r_3 = 0\), then \(a^2 - b^2 =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometry
If $ \alpha, \beta, \gamma $ are the roots of the equation $ x^3 + px^2 + qx + r = 0 $, then $ \alpha^3 + \beta^3 + \gamma^3 = $
AP EAPCET - 2025
AP EAPCET
Mathematics
Polynomials
The set of all real values of $x$ such that \[ f(x) = \frac{[x] - 1}{\sqrt{[x]^2 - [x] - 6}} \] is a real valued function is
AP EAPCET - 2025
AP EAPCET
Mathematics
Functions
If a function $f : \mathbb{Z} \to \mathbb{Z}$ is defined by $f(x) = x - (-1)^x$, then $f(x)$ is
AP EAPCET - 2025
AP EAPCET
Mathematics
Functions
If \[ A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & -1 & 2\\ -1 & 1 & -2 \end{bmatrix}, \] then find $A + 2A^{-1}$.
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices
If $(3 + 4i)^{2025} = 5^{2023}(x + iy)$, then find $\sqrt{x^2 + y^2}$.
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
If \[ \left(\frac{\cos \theta + i \sin \theta}{\sin \theta + i \cos \theta}\right)^{2024} + \left(\frac{1 + \cos \theta + i \sin \theta}{1 - \cos \theta + i \sin \theta}\right)^{2025} = x + iy, \] and $x + y$ at $\theta = \frac{\pi}{2}$ is
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
The coefficient of \(x^3\) in the expansion of \(\frac{x^4 + 1}{(x^2 + 1)(x - 1)}\) when it is expressed in terms of positive integral powers of \(x\), is
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
If \(x\) is a real number, then the number of solutions of \(\tan^{-1}\left(\sqrt{x(x+1)}\right) + \sin^{-1}\left(\sqrt{x^2 + x + 1}\right) = \dfrac{\pi}{2}\) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
Domain of the real-valued function \(f(x) = \log(x^2 - 1) + x \, \coth^{-1}x\) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Triangles
If \(|\vec{a}| = 2, |\vec{b}| = 3, |\vec{c}| = 5, |\vec{a} + \vec{b} + \vec{c}| = \sqrt{69}\) and angle between \((\vec{a}, \vec{b}) = \dfrac{\pi}{3}\), then angle between \((\vec{c}, \vec{a}) =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry and Vectors
One of the latus recta of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ subtends an angle $2 \tan^{-1} \left(\frac{3}{2}\right)$ at the centre of the hyperbola. If $b^2 = 36$ and $e$ is the eccentricity of the hyperbola, then find $\sqrt{a^2 + e^2}$.
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
If $L$ is the normal drawn to the parabola $y^2 = 8x$ at the point $t = \frac{1}{\sqrt{2}}$, then the foot of the perpendicular drawn from the focus of the parabola onto the normal $L$ is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
If the acute angle between the circles $S \equiv x^2 + y^2 + 2kx + 4y - 3 = 0$ and $S^1 \equiv x^2 + y^2 - 4x + 2ky + 9 = 0$ is $\cos^{-1}\left(\frac{3}{8}\right)$ and the centre of $S^1 = 0$ lies in the first quadrant, then the radical axis of $S = 0$ and $S^1 = 0$ is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry
If \(\cos \alpha = \sec h \beta\), then \(\beta =\)
AP EAPCET - 2025
AP EAPCET
Mathematics
Triangles
If \((1+x)^n = \sum_{r=0}^n \binom{n}{r} x^r\), then the value of \[ C_0 + (C_0 + C_1) + (C_0 + C_1 + C_2) + \cdots + (C_0 + C_1 + \cdots + C_n) \] is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Combinatorics
The area of the region (in sq. units) enclosed between the curves \( y = |x| \), \( y = [x] \) and the ordinates \( x = -1, x = 0, x = 1 \) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
The general solution of the differential equation \(\frac{dy}{dx} = \frac{x + y + 1}{x - 3y + 5}\) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
Evaluate the integral \[ \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{1}{\left(x + \sqrt{1 - x^2}\right) \cdot \left(1 - x^2\right)} \, dx = \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
The general solution of the differential equation \((x+2y)^3\frac{dy}{dx} = y = 0, y>0\) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
The general solution of the differential equation \(\frac{dy}{dx} + xy = 4x - 2y + 8\) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
Evaluate the integral $\displaystyle \int_0^{\frac{\pi
{2}} \log(\tan x + \cot x)\, dx$}
AP EAPCET - 2025
AP EAPCET
Mathematics
Differentiation
If \( \int \frac{dx}{(x-1)^2(x-3)^2
= \sqrt{f(x)} + c \), then \( f(-1) - f(0) = \)}
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
\( \int \frac{x}{(1-x^2)\sqrt{2 - x^2
} dx = \)}
AP EAPCET - 2025
AP EAPCET
Mathematics
Exponential and Logarithmic Functions
\( \int \frac{1 + x + \sqrt{x + x^2}}{\sqrt{x + \sqrt{1 + x}}} dx = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
Prev
1
...
25
26
27
28
29
...
97
Next