Step 1: Identify the Pattern
The given series can be written as:
\[ S = 1 + \sum_{n=1}^\infty \frac{\prod_{k=1}^n (6k-2)}{\prod_{k=1}^n (15k)} \] Step 2: Rewrite Using Pochhammer Symbols
Express the products using Pochhammer's symbol:
\[ S = \sum_{n=0}^\infty \frac{(\frac{2}{3})_n (\frac{1}{3})_n}{n!} \left(\frac{4}{5}\right)^n \] Step 3: Recognize as Hypergeometric Series
This is a hypergeometric series:
\[ S = {}_2F_1\left(\frac{2}{3}, \frac{1}{3}; 1; \frac{4}{5}\right) \] Step 4: Apply Hypergeometric Identity
Using the identity:
\[ {}_2F_1(a,b;a+b+\frac{1}{2};z) = {}_2F_1(2a,2b;a+b+\frac{1}{2};\frac{1-\sqrt{1-z}}{2}) \]
and evaluating at \( z = \frac{4}{5} \), we get:
\[ S = \left( \frac{5}{3} \right)^{2/3} \]
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Statement-I: In the interval \( [0, 2\pi] \), the number of common solutions of the equations
\[ 2\sin^2\theta - \cos 2\theta = 0 \]
and
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
is two.
Statement-II: The number of solutions of
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
in \( [0, \pi] \) is two.
If \( A \) and \( B \) are acute angles satisfying
\[ 3\cos^2 A + 2\cos^2 B = 4 \]
and
\[ \frac{3 \sin A}{\sin B} = \frac{2 \cos B}{\cos A}, \]
Then \( A + 2B = \ ? \)