If \[ \int \frac{2}{1+\sin x} dx = 2 \log |A(x) - B(x)| + C \] and \( 0 \leq x \leq \frac{\pi}{2} \), then \( B(\pi/4) = \) ?
If \( y = \tan(\log x) \), then \( \frac{d^2y}{dx^2} \) is given by:
Sum of the positive roots of the equation: \[ \begin{vmatrix} x^2 + 2x + 2 & x + 2 & 1 \\ 2x + 1 & x - 1 & 1 \\ x + 2 & -1 & 1 \end{vmatrix} = is \; 0. \]
Let \( a>1 \) and \( 0<b<1 \). -∞\( f : \mathbb{R} \to [0, 1] \) is defined by \( f(x) = \begin{cases} a^x & \text{if } x<0 b^x & \text{if } 0 \leq x \leq 1 \end{cases} \), then \( f(x) \) is:
If the sum of two roots of \( x^3 + px^2 + qx - 5 = 0 \) is equal to its third root, then \( p(q^2 - 4q) = \) ?
If \(n\) is an integer and \(Z = \cos \theta + i \sin \theta\), \(\theta \neq (2n + 1)\) \(\frac{\pi}{2}\), then: \(\frac{1 + Z^{2n}}{1 - Z^{2n}}\) = ?
The equation of a circle which touches the straight lines $x + y = 2$, $x - y = 2$ and also touches the circle $x^2 + y^2 = 1$ is: