We are asked to evaluate:
\[
\int_0^1 \frac{2x + 5}{x^2 + 3x + 2} \, dx
\]
Step 1: Factor the denominator
\[
x^2 + 3x + 2 = (x + 1)(x + 2)
\]
Step 2: Use partial fractions for the integrand
Let:
\[
\frac{2x + 5}{(x + 1)(x + 2)} = \frac{A}{x + 1} + \frac{B}{x + 2}
\]
Multiplying both sides by \( (x + 1)(x + 2) \), we get:
\[
2x + 5 = A(x + 2) + B(x + 1)
\]
Expanding:
\[
2x + 5 = Ax + 2A + Bx + B = (A + B)x + (2A + B)
\]
Equating coefficients:
\[
\begin{aligned}
A + B &= 2
\text{(i)}
2A + B &= 5
\text{(ii)}
\end{aligned}
\]
Solving:
Subtract equation (i) from equation (ii):
\[
\begin{aligned}
(2A + B) - (A + B) &= 5 - 2
A &= 3
\end{aligned}
\]
Substitute \( A = 3 \) into equation (i):
\[
\begin{aligned}
3 + B &= 2
B &= -1
\end{aligned}
\]
Subtract (i) from (ii):
\[
(2A + B) - (A + B) = 5 - 2 \Rightarrow A = 3
\Rightarrow B = -1
\]
Step 3: Integrate using partial fractions
\[
\int_0^1 \frac{2x + 5}{x^2 + 3x + 2} \, dx = \int_0^1 \left( \frac{3}{x + 1} - \frac{1}{x + 2} \right) dx
\]
\[
= \left[ 3\ln|x + 1| - \ln|x + 2| \right]_0^1
\]
\[
= \left( 3\ln(2) - \ln(3) \right) - \left( 3\ln(1) - \ln(2) \right)
= (3\ln2 - \ln3) - (0 - \ln2)
= 3\ln2 - \ln3 + \ln2
\]
\[
= 4\ln2 - \ln3 = \ln\left( \frac{16}{3} \right)
\]
\[
\boxed{\log\left(\frac{16}{3}\right)}
\]