If a real valued function
\[
f(x) = \begin{cases}
\log(1 + [x]), & x \geq 0 \\
\sin^{-1}[x], & -1 \leq x<0 \\
k([x] + |x|), & x<-1
\end{cases}
\]
is continuous at \(x = -1\), then find \(k\).
Show Hint
Check continuity by matching left and right limits and solving for unknown parameter.