We are given:
\[
(a + \sqrt{2}b \cos x)(a - \sqrt{2}b \cos y) = a^2 - b^2
\]
Differentiate both sides implicitly with respect to \( x \):
Let \( u = (a + \sqrt{2}b \cos x),
v = (a - \sqrt{2}b \cos y) \), so that:
\[
uv = a^2 - b^2
\Rightarrow \frac{d}{dx}(uv) = 0
\Rightarrow \frac{du}{dx}v + u \frac{dv}{dx} = 0
\]
Now compute \( \frac{du}{dx} \) and \( \frac{dv}{dx} \):
\[
\frac{du}{dx} = -\sqrt{2}b \sin x,
\frac{dv}{dx} = \sqrt{2}b \sin y . \frac{dy}{dx}
\]
Substitute into derivative:
\[
(-\sqrt{2}b \sin x)(a - \sqrt{2}b \cos y) + (a + \sqrt{2}b \cos x)(\sqrt{2}b \sin y . \frac{dy}{dx}) = 0
\]
\[
\Rightarrow -\sqrt{2}b \sin x(a - \sqrt{2}b \cos y) + \sqrt{2}b \sin y(a + \sqrt{2}b \cos x) . \frac{dy}{dx} = 0
\]
Solve for \( \dfrac{dy}{dx} \):
\[
\Rightarrow \frac{dy}{dx} = \frac{\sqrt{2}b \sin x(a - \sqrt{2}b \cos y)}{\sqrt{2}b \sin y(a + \sqrt{2}b \cos x)}
\]
Cancel \( \sqrt{2}b \) in numerator and denominator:
\[
\frac{dy}{dx} = \frac{\sin x(a - \sqrt{2}b \cos y)}{\sin y(a + \sqrt{2}b \cos x)}
\]
Now plug in \( x = \frac{\pi}{4}, y = \frac{\pi}{4} \). Then:
\[
\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}},
\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}
\]
\[
\Rightarrow \frac{dy}{dx} = \frac{\frac{1}{\sqrt{2}}(a - \sqrt{2}b . \frac{1}{\sqrt{2}})}{\frac{1}{\sqrt{2}}(a + \sqrt{2}b . \frac{1}{\sqrt{2}})}
= \frac{a - b}{a + b}
\]