We are given a region:
\[
R = \left\{ (x, y) : \frac{y^2}{2} \leq x \leq y + 4 \right\}
\]
Step 1: Understand the region
For a fixed \( y \), \( x \) ranges from \( \frac{y^2}{2} \) to \( y + 4 \).
We must determine the limits of \( y \) where the region exists. So we find the values of \( y \) for which:
\[
\frac{y^2}{2} \leq y + 4
\Rightarrow y^2 \leq 2y + 8
\Rightarrow y^2 - 2y - 8 \leq 0
\Rightarrow (y - 4)(y + 2) \leq 0
\]
This gives:
\[
-2 \leq y \leq 4
\]
Step 2: Set up the double integral for area
\[
\text{Area} = \int_{-2}^{4} \int_{\frac{y^2}{2}}^{y + 4} dx \, dy
\]
First integrate w.r.t \( x \):
\[
= \int_{-2}^{4} \left[ x \right]_{\frac{y^2}{2}}^{y + 4} \, dy
= \int_{-2}^{4} \left( y + 4 - \frac{y^2}{2} \right) dy
\]
Step 3: Simplify and integrate
\[
= \int_{-2}^{4} \left( -\frac{y^2}{2} + y + 4 \right) dy
= \int_{-2}^{4} \left( -\frac{y^2}{2} + y + 4 \right) dy
\]
Break it into parts:
\[
= -\frac{1}{2} \int_{-2}^{4} y^2 \, dy + \int_{-2}^{4} y \, dy + \int_{-2}^{4} 4 \, dy
\]
Compute each:
\[
\int_{-2}^{4} y^2 \, dy = \left[ \frac{y^3}{3} \right]_{-2}^{4} = \frac{64}{3} - \left( -\frac{8}{3} \right) = \frac{72}{3} = 24
\]
\[
\int_{-2}^{4} y \, dy = \left[ \frac{y^2}{2} \right]_{-2}^{4} = \frac{16}{2} - \frac{4}{2} = 8 - 2 = 6
\]
\[
\int_{-2}^{4} 4 \, dy = 4(4 - (-2)) = 4 \times 6 = 24
\]
Now substitute:
\[
= -\frac{1}{2}(24) + 6 + 24 = -12 + 6 + 24 = \boxed{18}
\]