We are given:
\[
x = \sqrt{2 \cosec^{-1} t},
y = \sqrt{2 \sec^{-1} t}
\]
We need to find \( \dfrac{dy}{dx} \). First, we use the chain rule:
\[
\frac{dy}{dx} = \frac{dy}{dt} . \frac{dt}{dx}
\]
Step 1: Differentiate \( x \) with respect to \( t \)
\[
x = \sqrt{2 \cosec^{-1} t} \Rightarrow \frac{dx}{dt} = \frac{1}{2\sqrt{2 \cosec^{-1} t}} . \frac{d}{dt}(\cosec^{-1} t)
\]
We know:
\[
\frac{d}{dt}(\cosec^{-1} t) = \frac{-1}{|t|\sqrt{t^2 - 1}}
\]
So:
\[
\frac{dx}{dt} = \frac{-1}{2\sqrt{2 \cosec^{-1} t} . |t| \sqrt{t^2 - 1}} = \frac{-1}{2x |t| \sqrt{t^2 - 1}}
\text{(since } x = \sqrt{2 \cosec^{-1} t} \text{)}
\]
Step 2: Differentiate \( y \) with respect to \( t \)
\[
y = \sqrt{2 \sec^{-1} t} \Rightarrow \frac{dy}{dt} = \frac{1}{2\sqrt{2 \sec^{-1} t}} . \frac{d}{dt}(\sec^{-1} t)
\]
We know:
\[
\frac{d}{dt}(\sec^{-1} t) = \frac{1}{|t|\sqrt{t^2 - 1}}
\]
So:
\[
\frac{dy}{dt} = \frac{1}{2\sqrt{2 \sec^{-1} t} . |t| \sqrt{t^2 - 1}} = \frac{1}{2y |t| \sqrt{t^2 - 1}}
\text{(since } y = \sqrt{2 \sec^{-1} t} \text{)}
\]
Step 3: Use chain rule
\[
\frac{dy}{dx} = \frac{dy}{dt} . \frac{dt}{dx} = \frac{dy}{dt} . \frac{1}{\frac{dx}{dt}} = \frac{\frac{1}{2y |t| \sqrt{t^2 - 1}}}{\frac{-1}{2x |t| \sqrt{t^2 - 1}}}
= \frac{1}{2y} . \frac{2x}{-1} = \frac{-x}{y}
\]
So:
\[
\boxed{\frac{dy}{dx} = \frac{-y}{x}}
\]