We are given:
\[
\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2} \sec^2 \left( \frac{k^2}{n^2} \right)
\]
Step 1: Convert to Riemann sum form.
Let:
\[
x = \frac{k}{n} \Rightarrow \frac{k^2}{n^2} = x^2,
\frac{1}{n} \text{ is the width of subinterval}
\]
So the expression becomes:
\[
\lim_{n \to \infty} \sum_{k=1}^{n} \left( \frac{k}{n} . \frac{1}{n} \sec^2 \left( \left( \frac{k}{n} \right)^2 \right) \right)
= \lim_{n \to \infty} \sum_{k=1}^{n} x \sec^2(x^2) . \frac{1}{n}
\]
This is a Riemann sum:
\[
\int_0^1 x \sec^2(x^2) \, dx
\]
Step 2: Solve the definite integral.
Let \( u = x^2 \Rightarrow du = 2x dx \Rightarrow x dx = \frac{1}{2} du \)
Then,
\[
\int_0^1 x \sec^2(x^2) \, dx = \int_0^1 \sec^2(x^2) . x \, dx = \frac{1}{2} \int_0^1 \sec^2 u \, du = \frac{1}{2} \tan u \Big|_0^1 = \frac{1}{2} \tan 1
\]
\[
\boxed{ \lim_{n \to \infty} \left[ .s \right] = \frac{1}{2} \tan 1 }
\]