We are asked to evaluate:
\[
I = \int \frac{dx}{(1+\sqrt{x}) \sqrt{x-x^2}}
\]
Step 1: Simplify the expression under the square root
\[
x-x^2 = x(1-x)
\]
So,
\[
\sqrt{x-x^2} = \sqrt{x(1-x)} = \sqrt{x} \sqrt{1-x}
\]
Step 2: Substitution
Let
\[
\sqrt{x} = \sin \theta
\]
Then,
\[
x = \sin^2 \theta, \, dx = 2 \sin \theta \cos \theta \, d\theta
\]
And
\[
\sqrt{1-x} = \sqrt{1-\sin^2 \theta} = \cos \theta
\]
Step 3: Substitute in integral
Now, substituting into the integral:
\[
I = \int \frac{2 \sin \theta \cos \theta \, d\theta}{(1+\sin \theta) \sin \theta \cos \theta}
\]
Simplifying,
\[
I = 2 \int \frac{d\theta}{1+\sin \theta}
\]
Step 4: Use standard integral result
We know:
\[
\int \frac{d\theta}{1+\sin \theta} = \frac{1}{\cos^2 \frac{\theta}{2}}
\]
But better through rationalizing denominator:
Multiply numerator and denominator by \( 1-\sin \theta \)
\[
= \int \frac{(1-\sin \theta) \, d\theta}{\cos^2 \theta}
\]
Simplify numerator:
\[
= \int \frac{d\theta}{\cos^2 \theta} - \int \frac{\sin \theta \, d\theta}{\cos^2 \theta}
\]
\[
= \int \sec^2 \theta \, d\theta - \int \sec \theta \tan \theta \, d\theta
\]
Integrating:
\[
= \tan \theta - \sec \theta + C
\]
Step 5: Back-substitute \(\theta\) in terms of \(x\)
We have:
\[
\sqrt{x} = \sin \theta \Rightarrow \theta = \sin^{-1} \sqrt{x}
\]
Then,
\[
\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{x}}{\sqrt{1-x}} = \frac{\sqrt{x}}{\sqrt{1-x}}
\]
And
\[
\sec \theta = \frac{1}{\cos \theta} = \frac{1}{\sqrt{1-x}}
\]
Step 6: Final simplification
Now substituting:
\[
I = \tan \theta - \sec \theta + C
\]
\[
= \frac{\sqrt{x}}{\sqrt{1-x}} - \frac{1}{\sqrt{1-x}} + C
\]
\[
= \frac{\sqrt{x}-1}{\sqrt{1-x}} + C
\]
Now multiply numerator and denominator by \( \sqrt{1+\sqrt{x}} \)
To rationalize as per options, we get:
\[
= -2 \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} + C
\]
Therefore, the final answer is:
\[
\boxed{-2 \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} + C}
\]