We are given the differential equation:
\[
\cos(x + y) \, dy = dx
\]
Step 1: Separate variables.
\[
\cos(x + y) \, dy = dx
\Rightarrow
\cos(x + y) = \frac{dx}{dy}
\]
Let us try substitution: \( u = x + y \Rightarrow \frac{du}{dy} = \frac{dx}{dy} + 1 \)
So,
\[
\cos(u) = \frac{dx}{dy} = \frac{du}{dy} - 1
\Rightarrow \cos(u) = \frac{du}{dy} - 1
\Rightarrow \frac{du}{dy} = \cos(u) + 1
\]
Step 2: Separate and integrate.
\[
\frac{du}{\cos(u) + 1} = dy
\]
Use the identity:
\[
\frac{1}{\cos u + 1} = \frac{\sec^2\left( \frac{u}{2} \right)}{2}
\]
So,
\[
\int \frac{du}{\cos u + 1} = \int \frac{\sec^2\left( \frac{u}{2} \right)}{2} \, du = \int \sec^2\left( \frac{u}{2} \right) . \frac{1}{2} \, du
\]
Let \( w = \frac{u}{2} \Rightarrow du = 2 \, dw \)
\[
\int \sec^2(w) \, dw = \tan(w) + C = \tan\left( \frac{u}{2} \right) + C
\]
So,
\[
y = \tan\left( \frac{x + y}{2} \right) + c
\]
% Final Answer
\[
\boxed{ y = \tan\left( \frac{x + y}{2} \right) + c }
\]