We are given:
\[
\int_0^1 x^{5/2} (1 - x)^{3/2} \, dx
\]
This integral is in the form of a Beta function:
\[
\int_0^1 x^{m - 1}(1 - x)^{n - 1} dx = B(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m + n)}
\]
Step 1: Match the form
Let us write:
\[
x^{5/2} = x^{(7/2) - 1},
(1 - x)^{3/2} = (1 - x)^{(5/2) - 1}
\]
So we can set:
\[
m = \frac{7}{2},
n = \frac{5}{2}
\]
Step 2: Use the Beta function
\[
\int_0^1 x^{5/2} (1 - x)^{3/2} dx = B\left(\frac{7}{2}, \frac{5}{2}\right)
= \frac{\Gamma\left(\frac{7}{2}\right) \Gamma\left(\frac{5}{2}\right)}{\Gamma\left(6\right)}
\]
Step 3: Use values of Gamma functions
\[
\Gamma\left(\frac{7}{2}\right) = \frac{5}{2} . \frac{3}{2} . \frac{1}{2} . \sqrt{\pi} = \frac{15}{8} \sqrt{\pi}
\]
\[
\Gamma\left(\frac{5}{2}\right) = \frac{3}{2} . \frac{1}{2} . \sqrt{\pi} = \frac{3}{4} \sqrt{\pi}
\]
\[
\Gamma(6) = (6 - 1)! = 5! = 120
\]
Step 4: Substitute back
\[
\frac{\Gamma\left(\frac{7}{2}\right) \Gamma\left(\frac{5}{2}\right)}{\Gamma(6)}
= \frac{\left(\frac{15}{8} \sqrt{\pi}\right) \left(\frac{3}{4} \sqrt{\pi}\right)}{120}
= \frac{45 \pi}{32 . 120}
= \frac{45 \pi}{3840}
= \frac{3 \pi}{256}
\]
\[
\boxed{ \int_0^1 x^{5/2} (1 - x)^{3/2} \, dx = \frac{3 \pi}{256} }
\]