>
AP EAPCET
>
Mathematics
List of top Mathematics Questions asked in AP EAPCET
A radar system can detect an enemy plane in one out of ten consecutive scans. The probability that it can detect an enemy plane at least twice in four consecutive scans is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Binomial theorem
Let
\( \vec{a} = 2\hat{i} + \hat{j} + 3\hat{k} \), \( \vec{b} = 3\hat{i} + 3\hat{j} + \hat{k} \),
and
\( \vec{c} = \hat{i} - 2\hat{j} + 3\hat{k} \)
be three vectors. If
\( \vec{r} \)
is a vector such that
\( \vec{r} \times \vec{a} = \vec{r} \times \vec{b} \)
and
\( \vec{r} . \vec{c} = 18 \),
then the magnitude of the orthogonal projection of
\( 4\hat{i} + 3\hat{j} - \hat{k} \)
on
\( \vec{r} \)
is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry and Vectors
In
\( \triangle ABC \),
if
\( \sin^2 B = \sin A \)
and
\( 2\cos^2 A = 3\cos^2 B \),
then the triangle is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
If the position vectors of A, B, C, D are
\( \vec{A} = \hat{i} + 2\hat{j} + 2\hat{k}, \vec{B} = 2\hat{i} - \hat{j}, \vec{C} = \hat{i} + \hat{j} + 3\hat{k}, \vec{D} = 4\hat{j} + 5\hat{k} \),
then the quadrilateral ABCD is a:
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry and Vectors
Two students appeared simultaneously for an entrance exam. If the probability that the first student gets qualified in the exam is
\( \frac{1}{4} \)
and the probability that the second student gets qualified in the same exam is
\( \frac{2}{5} \),
then the probability that at least one of them gets qualified in that exam is
AP EAPCET - 2025
AP EAPCET
Mathematics
Statistics
If \( \sum\limits_{i=1}^{9} (x_i - 5) = 9 \) and \( \sum\limits_{i=1}^{9} (x_i - 5)^2 = 45 \), then the standard deviation of the nine observations \( x_1, x_2, \ldots, x_9 \) is
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry and Vectors
The set of all real values of \( c \) so that the angle between the vectors
\( \vec{a} = c\hat{i} - 6\hat{j} + 3\hat{k} \)
and
\( \vec{b} = x\hat{i} + 2\hat{j} + 2c\hat{k} \)
is an obtuse angle for all real \( x \), is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry and Vectors
If in
\( \triangle ABC \), \( B = 45^\circ \), \( a = 2(\sqrt{3} + 1) \)
and area of
\( \triangle ABC \)
is
\( 6 + 2\sqrt{3} \)
sq. units, then the side
\( b = \ ? \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Triangles
In
\( \triangle ABC \),
if A, B, C are in arithmetic progression, then
\[ \sqrt{a^2 - ac + c^2} . \cos\left(\frac{A - C}{2}\right) =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
The equation
\[ \cos^{-1}(1 - x) - 2 \cos^{-1} x = \frac{\pi}{2} \]
has:
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
If
\( \sinh^{-1}(2) + \sinh^{-1}(3) = \alpha \),
then
\( \sinh\alpha = \) ?
AP EAPCET - 2025
AP EAPCET
Mathematics
Triangles
\[ \sum_{r=1}^{15} r^2 \left( \frac{{}^{15}C_r}{{}^{15}C_{r-1}} \right) =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Binomial Expansion
Evaluate the following expression:
\[ \frac{1}{81^n} - \binom{2n}{1} . \frac{10}{81^n} + \binom{2n}{2} . \frac{10^2}{81^n} - .s + \frac{10^{2n}}{81^n} = ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Combinatorics
If \( x \) is a positive real number and the first negative term in the expansion of
\[ (1 + x)^{27/5} \text{ is } t_k, \text{ then } k =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Number System
An eight digit number divisible by 9 is to be formed using digits from 0 to 9 without repeating the digits. The number of ways in which this can be done is
AP EAPCET - 2025
AP EAPCET
Mathematics
Number System
If
\[ \frac{x^2}{(x^2 + 2)(x^4 - 1)} = \frac{A}{x^2 - 1} + \frac{B}{x^2 + 1} + \frac{C}{x^2 + 2}, \text{ then } A + B - C =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
A string of letters is to be formed by using 4 letters from all the letters of the word “MATHEMATICS”. The number of ways this can be done such that two letters are of same kind and the other two are of different kind is
AP EAPCET - 2025
AP EAPCET
Mathematics
Binomial theorem
If
\( \alpha \) is the common root of the quadratic equations \( x^2 - 5x + 4a = 0 \) and \( x^2 - 2ax - 8 = 0 \), where \( a \in \mathbb{R} \), then the value of \( \alpha^4 - \alpha^3 + 68 \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
If
\( \alpha, \beta, \gamma \)
are the roots of the equation
\[ x^3 + px^2 + qx + r = 0, \]
then
\[ (\alpha + \beta)(\beta + \gamma)(\gamma + \alpha) =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
The equation
\[ x^{\frac{3}{4}(\log_{x} x)^2 + \log_{x} x^{-\frac{5}{4}}} = \sqrt{2} \]
has
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
If
\( \alpha, \beta \) are the roots of \( x^2 - 5x - 68 = 0 \) and \( \gamma, \delta \) are the roots of \( x^2 - 5\alpha x - 6\beta = 0 \), then \( \alpha + \beta + \gamma + \delta = \) ?
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
If
\( \omega_1 \) and \( \omega_2 \) are two non-zero complex numbers and \( a, b \) are non-zero real numbers such that \[ |a\omega_1 + b\omega_2| = |a\omega_1 - b\omega_2|, \] then \( \dfrac{\omega_1}{\omega_2} \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
Let \( g(x) = 1 + x - \lfloor x \rfloor \) and
\[ f(x) = \begin{cases} -1, & x<0\\ 0, & x = 0 \\ 1, & x>0 \end{cases} \]
where \( \lfloor x \rfloor \) denotes the greatest integer less than or equal to \( x \). Then for all \( x \), \( f(g(x)) = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Functions
If \( f : \mathbb{R} \to A \), defined by \( f(x) = \cos x + \sqrt{3}\sin x - 1 \), is an onto function, then \( A = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Functions
A value of \( \theta \) lying between \( 0 \) and \( \dfrac{\pi}{2} \) and satisfying
\[ \begin{vmatrix} 1 + \sin^2 \theta & \cos^2 \theta & 4\sin 4\theta \\ \sin^2 \theta & 1 + \cos^2 \theta & 4\sin 4\theta \\ \sin^2 \theta & \cos^2 \theta & 1 + 4\sin 4\theta \end{vmatrix} = 0 \]
is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices
Prev
1
2
3
4
5
6
...
97
Next