We are asked to find the absolute maximum and minimum values of:
\[
f(x) = 2x^3 - 15x^2 + 36x - 30
\]
on the interval \( [-1, 4] \), and then find their difference.
Step 1: Find the derivative of \( f(x) \)
\[
f'(x) = \frac{d}{dx}\left(2x^3 - 15x^2 + 36x - 30\right)
= 6x^2 - 30x + 36
\]
Step 2: Find critical points by setting \( f'(x) = 0 \)
\[
6x^2 - 30x + 36 = 0
\]
Divide through by 6:
\[
x^2 - 5x + 6 = 0
\]
Factorizing:
\[
(x-2)(x-3) = 0
\]
So, critical points are:
\[
x = 2, 3
\]
Step 3: Evaluate \( f(x) \) at critical points and at endpoints \( x = -1, 4 \)
\[
f(-1) = 2(-1)^3 - 15(-1)^2 + 36(-1) - 30 = -2 - 15 - 36 - 30 = -83
\]
\[
f(2) = 2(2)^3 - 15(2)^2 + 36(2) - 30 = 16 - 60 + 72 - 30 = -2
\]
\[
f(3) = 2(3)^3 - 15(3)^2 + 36(3) - 30 = 54 - 135 + 108 - 30 = -3
\]
\[
f(4) = 2(4)^3 - 15(4)^2 + 36(4) - 30 = 128 - 240 + 144 - 30 = 2
\]
Step 4: Identify the absolute maximum and minimum values
From the computed values:
\[
\text{Maximum value} = 2
\]
\[
\text{Minimum value} = -83
\]
Step 5: Compute the difference
\[
\text{Difference} = 2 - (-83) = 85
\]
% Final Answer
Hence, the difference is 85.