>
AP EAMCET
>
Mathematics
List of top Mathematics Questions asked in AP EAMCET
Evaluate the integral:
\[ I = \int_0^{\frac{\pi}{4}} \log(1 + \tan x) \,dx. \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
Evaluate the limit:
\[ \lim_{n \to \infty} \left( \frac{1}{\sqrt{n^2}} + \frac{1}{\sqrt{n^2 - 1}} + \dots + \frac{1}{\sqrt{n^2 - (n-1)^2}} \right). \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
The area (in square units) bounded by the curves \( x = y^2 \) and \( x = 3 - 2y^2 \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Area under Simple Curves
Evaluate the integral:
\[ I = \int_{-\pi}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \,dx. \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
The general solution of the differential equation:
\[ (1 + \tan y) (dx - dy) + 2x \, dy = 0. \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Differential equations
Evaluate the integral \( \int_0^{\pi} \frac{x \sin x}{4 \cos^2 x + 3 \sin^2 x} dx \):
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
The sum of the order and degree of the differential equation:
\[ x \left( \frac{d^2 y}{dx^2} \right)^{1/2} = \left( 1 + \frac{dy}{dx} \right)^{4/3} \] is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Differential equations
If
\[ \frac{x^2+3}{x^4+2x^2+9} = \frac{Ax+B}{x^2+ax+b} + \frac{Cx+D}{x^2+cx+d} \]
then \( aA + bB + cC + dD = \)
AP EAMCET - 2024
AP EAMCET
Mathematics
Some Properties of a Triangle
The normal drawn at a point \( (2, -4) \) on the parabola \( y^2 = 8x \) cuts again the same parabola at \( (\alpha, \beta) \). Then \( \alpha + \beta \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Parabola
The interval containing all the real values of \( x \) such that the real valued function
\[ f(x) = \sqrt{x} + \frac{1}{\sqrt{x}} \]
is strictly increasing is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Functions
The length of the tangent drawn from the point \( \left(\frac{k}{4}, \frac{k}{3}\right) \) to the circle \( x^2 + y^2 + 8x - 6y - 24 = 0 \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Coordinate Geometry
Evaluate the expression
\[ 2 \cot h^{-1}(4) + \sec h^{-1}\left( \frac{3}{5} \right). \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Locus of Normals
If the period of the function \( f(x) = \frac{\tan 5x \cos 3x}{\sin 6x} \) is \( \alpha \), then find \( f \left( \frac{\alpha}{8} \right) \):
AP EAMCET - 2024
AP EAMCET
Mathematics
Algebraic Methods of Solving a Pair of Linear Equations
If \( (a, \beta) \) is the orthocenter of the triangle with the vertices \( A(2, 5), B(1, 5), C(1, 4) \), then \( a + \beta = \):
AP EAMCET - 2024
AP EAMCET
Mathematics
Some Properties of a Triangle
If the pair of lines represented by
\[ 3x^2 - 5xy + P y^2 = 0 \]
and
\[ 6x^2 - xy - 5y^2 = 0 \]
have one line in common, then the sum of all possible values of \( P \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Family of Lines
If \( a \) is a rational number, then the roots of the equation \( x^2 - 3ax + a^2 - 2a - 4 = 0 \) are:
AP EAMCET - 2024
AP EAMCET
Mathematics
Quadratic Equations
Evaluate the integral
$$ I = \int_1^5 \left( |x - 3| + |1 - x| \right) \, dx $$
AP EAMCET - 2024
AP EAMCET
Mathematics
Definite Integral
If \( x \) is real and \( \alpha, \beta \) are maximum and minimum values of
\( \frac{x^2 - x + 1}{x^2 + x + 1} \)
respectively, then \( \alpha + \beta = \):
AP EAMCET - 2024
AP EAMCET
Mathematics
Geometry and Vectors
Simplify the expression:
\( 4 + \frac{1}{4 + \frac{1}{4 + \frac{1}{4 + \cdots}}} \)
AP EAMCET - 2024
AP EAMCET
Mathematics
Quadratic Equations
The equation \( 2x^2 - 3xy - 2y^2 = 0 \) represents two lines \( L_1 \) and \( L_2 \). The equation \( 2x^2 - 3xy - 2y^2 - x + 7y - 3 = 0 \) represents another two lines \( L_3 \) and \( L_4 \). Let \( A \) be the point of intersection of lines \( L_1 \) and \( L_3 \), and \( B \) be the point of intersection of lines \( L_2 \) and \( L_4 \). The area of the triangle formed by the lines \( AB \), \( L_3 \), and \( L_4 \) is: .
AP EAMCET - 2024
AP EAMCET
Mathematics
Coordinate Geometry
Equation of the line touching both parabolas \( y^2 = 4x \) and \( x^2 = -32y \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Coordinate Geometry
A Circle S passes through the points of intersection of the circles \( x^2 + y^2 - 2x + 2y - 2 = 0 \) and \( x^2 + y^2 + 2x - 2y + 1 = 0 \). If the centre of this circle S lies on the line \( x - y + 6 = 0 \), then the radius of the circle S is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Coordinate Geometry
tan 9$^\circ$ - tan 27$^\circ$ - tan 63$^\circ$ + tan 81$^\circ$ =
AP EAMCET - 2024
AP EAMCET
Mathematics
Trigonometry
If the vectors
\[ \mathbf{a} = 2i - j + k, \quad \mathbf{b} = i + 2j - 3k, \quad \mathbf{c} = 3i + pj + 5k \] are coplanar, find \( p \).
AP EAMCET - 2024
AP EAMCET
Mathematics
Geometry and Vectors
Evaluate the integral \( \int \frac{\sin^{-1} \left(\frac{x}{\sqrt{a + x}}\right) \sqrt{a + x}}{dx} \):
AP EAMCET - 2024
AP EAMCET
Mathematics
Some Properties of a Triangle
Prev
1
...
10
11
12
13
14
...
29
Next