Step 1: Finding Points of Intersection
The given curves are:
\[
x = y^2
\]
\[
x = 3 - 2y^2.
\]
To find the points of intersection, set both equations equal to each other:
\[
y^2 = 3 - 2y^2.
\]
Solving for \( y^2 \):
\[
y^2 + 2y^2 = 3.
\]
\[
3y^2 = 3.
\]
\[
y^2 = 1 \Rightarrow y = \pm 1.
\]
Thus, the curves intersect at \( y = -1 \) and \( y = 1 \).
Step 2: Setting up the Area Integral
The area between the curves is given by:
\[
A = \int_{-1}^{1} \left[ (3 - 2y^2) - y^2 \right] dy.
\]
Simplifying the integrand:
\[
A = \int_{-1}^{1} \left( 3 - 3y^2 \right) dy.
\]
\[
A = \int_{-1}^{1} 3 \,dy - \int_{-1}^{1} 3y^2 \,dy.
\]
Step 3: Evaluating the Integral
First integral:
\[
\int_{-1}^{1} 3 \,dy = 3[y]_{-1}^{1} = 3(1 - (-1)) = 3(2) = 6.
\]
Second integral:
\[
\int_{-1}^{1} 3y^2 \,dy = 3 \int_{-1}^{1} y^2 \,dy.
\]
Using the standard formula:
\[
\int y^n dy = \frac{y^{n+1}}{n+1},
\]
we get:
\[
\int y^2 dy = \frac{y^3}{3}.
\]
Evaluating from \( -1 \) to \( 1 \):
\[
\left[ \frac{y^3}{3} \right]_{-1}^{1} = \frac{1^3}{3} - \frac{(-1)^3}{3} = \frac{1}{3} - \left(-\frac{1}{3}\right) = \frac{2}{3}.
\]
Thus,
\[
\int_{-1}^{1} 3y^2 dy = 3 \times \frac{2}{3} = 2.
\]
Step 4: Final Calculation
\[
A = 6 - 2 = 4.
\]
Thus, the correct answer is option (3): \( 4 \).