The point (a, b) is the foot of the perpendicular drawn from the point (3, 1) to the line x + 3y + 4 = 0. If (p, q) is the image of (a, b) with respect to the line 3x - 4y + 11 = 0, then $\frac{p}{a} + \frac{q}{b} = $
Let P be any point on the circle x2 + y2 = 25. Let L be the chord of contact of P with respect to the circle x^2 + y^2 = 9. The locus of the poles of the lines L with respect to the circle x2 + y2 = 36 is:
If the circle S = 0 cuts the circles x2 + y2 - 2x + 6y = 0, x2 + y2 - 4x - 2y + 6 = 0, and x2 + y2 - 12x + 2y + 3 = 0 orthogonally, then the equation of the tangent at (0, 3) on S = 0 is: