To evaluate the integral \( \int \frac{x^3 \tan^{-1}(x^4)}{1 + x^8} \,dx, \) we will use integration by parts.
Let's denote:
Substitute into the integral:
\( v = \frac{1}{4} \int \frac{dw}{1+w^2} = \frac{1}{4} \tan^{-1}(w) + C = \frac{1}{4} \tan^{-1}(x^4) + C. \)
Now apply integration by parts:
\( \int u \, dv = uv - \int v \, du \)
Since \( \int v \, du = \int \frac{x^3 \tan^{-1}(x^4)}{1+x^8} dx, \) this integral was our original integral. Thus the integral evaluates to:
\( I = \frac{1}{2} \times \frac{1}{4} (\tan^{-1}(x^4))^2 + C = \frac{1}{8} (\tan^{-1}(x^4))^2 + C. \)
Thus, the result is:
\( \boxed{\frac{(\tan^{-1}(x^4))^2}{8} + c} \)
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals
Let $(2\alpha,\alpha)$ be the largest interval in which the function \[ f(t)=\frac{|t+1|}{t^2},\; t<0 \] is strictly decreasing. Then the local maximum value of the function \[ g(x)=2\log_e(x-2)+\alpha x^2+4x-\alpha,\; x>2 \] is
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))