To evaluate the integral \( \int \frac{x^3 \tan^{-1}(x^4)}{1 + x^8} \,dx, \) we will use integration by parts.
Let's denote:
Substitute into the integral:
\( v = \frac{1}{4} \int \frac{dw}{1+w^2} = \frac{1}{4} \tan^{-1}(w) + C = \frac{1}{4} \tan^{-1}(x^4) + C. \)
Now apply integration by parts:
\( \int u \, dv = uv - \int v \, du \)
Since \( \int v \, du = \int \frac{x^3 \tan^{-1}(x^4)}{1+x^8} dx, \) this integral was our original integral. Thus the integral evaluates to:
\( I = \frac{1}{2} \times \frac{1}{4} (\tan^{-1}(x^4))^2 + C = \frac{1}{8} (\tan^{-1}(x^4))^2 + C. \)
Thus, the result is:
\( \boxed{\frac{(\tan^{-1}(x^4))^2}{8} + c} \)