To evaluate the integral \( I = \int_0^{\frac{\pi}{4}} \log(1 + \tan x) \,dx \), we will use symmetry properties and substitution to simplify the computation. First, note the substitution \( u = \frac{\pi}{4} - x \). Consequently, \( du = -dx \), and when \( x = 0 \), \( u = \frac{\pi}{4} \); when \( x = \frac{\pi}{4} \), \( u = 0 \). Therefore, the integral becomes:
\[
I = \int_{\frac{\pi}{4}}^{0} \log(1 + \tan(\frac{\pi}{4} - u)) (-du) = \int_0^{\frac{\pi}{4}} \log(1 + \tan(\frac{\pi}{4} - u)) \,du.
\]
Using the identity \( \tan(\frac{\pi}{4} - u) = \frac{1 - \tan u}{1 + \tan u} \), we have:
\[
1 + \tan(\frac{\pi}{4} - u) = \frac{1 + \tan u + 1 - \tan u}{1 + \tan u} = \frac{2}{1 + \tan u}.
\]
Thus the integral becomes:
\[
I = \int_0^{\frac{\pi}{4}} \log\left(\frac{2}{1 + \tan u}\right) \,du = \int_0^{\frac{\pi}{4}} \left(\log 2 - \log(1 + \tan u)\right) \,du.
\]
Separate the integral:
\[
I = \int_0^{\frac{\pi}{4}} \log 2 \,du - \int_0^{\frac{\pi}{4}} \log(1 + \tan u) \,du.
\]
The first part simplifies to:
\[
\int_0^{\frac{\pi}{4}} \log 2 \,du = \log 2 \cdot \left[\frac{\pi}{4} - 0\right] = \frac{\pi}{4} \log 2.
\]
The second integral, due to symmetry, is also equal to \( I \). Hence, it follows:
\[
I = \frac{\pi}{4} \log 2 - I.
\]
Solving for \( I \):
\[
2I = \frac{\pi}{4} \log 2 \quad \Rightarrow \quad I = \frac{\pi}{8} \log 2.
\]
Thus, the value of the integral is \(\boxed{\frac{\pi}{8} \log 2}\).