Evaluate the integral: $$ I = \int \frac{2}{1 + x + x^2} \,dx. $$
To solve the integral \( I = \int \frac{2}{1 + x + x^2} \,dx \), we need to simplify the denominator. We recognize that it can be rewritten by completing the square:
\( 1 + x + x^2 = x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4} \).
Substituting this back, we get:
\( I = \int \frac{2}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} \, dx \).
Recognizing this integral as an inverse tangent form, we use the substitution:
\( u = x + \frac{1}{2}, \quad du = dx \).
Then the integral becomes:
\( I = \int \frac{2}{u^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \, du \).
Using the standard formula \( \int \frac{1}{u^2 + a^2} \, du = \frac{1}{a} \tan^{-1} \left(\frac{u}{a}\right) + C \), where \( a = \frac{\sqrt{3}}{2} \), we find:
\( I = \frac{2}{\frac{\sqrt{3}}{2}} \tan^{-1} \left(\frac{u}{\frac{\sqrt{3}}{2}}\right) + C = \frac{4}{\sqrt{3}} \tan^{-1} \left(\frac{2u}{\sqrt{3}}\right) + C \).
Substituting back \( u = x + \frac{1}{2} \), the solution is:
\( \frac{4}{\sqrt{3}} \tan^{-1} \left(\frac{2(x + \frac{1}{2})}{\sqrt{3}}\right) + C = \frac{4}{\sqrt{3}} \tan^{-1} \left(\frac{2x + 1}{\sqrt{3}}\right) + C \).
Thus, the correct answer is:
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals
Let $(2\alpha,\alpha)$ be the largest interval in which the function \[ f(t)=\frac{|t+1|}{t^2},\; t<0 \] is strictly decreasing. Then the local maximum value of the function \[ g(x)=2\log_e(x-2)+\alpha x^2+4x-\alpha,\; x>2 \] is
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))