Evaluate the integral: $$ I = \int \frac{2}{1 + x + x^2} \,dx. $$
To solve the integral \( I = \int \frac{2}{1 + x + x^2} \,dx \), we need to simplify the denominator. We recognize that it can be rewritten by completing the square:
\( 1 + x + x^2 = x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4} \).
Substituting this back, we get:
\( I = \int \frac{2}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} \, dx \).
Recognizing this integral as an inverse tangent form, we use the substitution:
\( u = x + \frac{1}{2}, \quad du = dx \).
Then the integral becomes:
\( I = \int \frac{2}{u^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \, du \).
Using the standard formula \( \int \frac{1}{u^2 + a^2} \, du = \frac{1}{a} \tan^{-1} \left(\frac{u}{a}\right) + C \), where \( a = \frac{\sqrt{3}}{2} \), we find:
\( I = \frac{2}{\frac{\sqrt{3}}{2}} \tan^{-1} \left(\frac{u}{\frac{\sqrt{3}}{2}}\right) + C = \frac{4}{\sqrt{3}} \tan^{-1} \left(\frac{2u}{\sqrt{3}}\right) + C \).
Substituting back \( u = x + \frac{1}{2} \), the solution is:
\( \frac{4}{\sqrt{3}} \tan^{-1} \left(\frac{2(x + \frac{1}{2})}{\sqrt{3}}\right) + C = \frac{4}{\sqrt{3}} \tan^{-1} \left(\frac{2x + 1}{\sqrt{3}}\right) + C \).
Thus, the correct answer is:
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
An inductor and a resistor are connected in series to an AC source of voltage \( 144\sin(100\pi t + \frac{\pi}{2}) \) volts. If the current in the circuit is \( 6\sin(100\pi t + \frac{\pi}{2}) \) amperes, then the resistance of the resistor is: