Question:

Evaluate the limit: \[ \lim_{n \to \infty} \left( \frac{1}{\sqrt{n^2}} + \frac{1}{\sqrt{n^2 - 1}} + \dots + \frac{1}{\sqrt{n^2 - (n-1)^2}} \right). \]

Show Hint

For summations involving terms of the form \( \frac{1}{\sqrt{n^2 - k^2}} \), use the integral approximation: \[ \sum \approx \int \frac{dx}{\sqrt{n^2 - x^2}}. \] Recognizing the standard integral \( \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \left( \frac{x}{a} \right) \) helps in evaluating the limit.
Updated On: Mar 24, 2025
  • \( 2\sqrt{\pi} \)
  • \( \frac{2}{\sqrt{\pi}} \)
  • \( \frac{\pi}{2} \)
  • \( \frac{3\pi}{2} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Expressing the Summation as an Integral The given sum can be rewritten as: \[ S_n = \sum_{k=1}^{n} \frac{1}{\sqrt{n^2 - k^2}}. \] For large values of \( n \), we approximate the sum using an integral: \[ S_n \approx \int_0^n \frac{dx}{\sqrt{n^2 - x^2}}. \] Using the standard integral result: \[ \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \left( \frac{x}{a} \right), \] we evaluate: \[ S_n \approx \int_0^n \frac{dx}{\sqrt{n^2 - x^2}}. \]
Step 2: Evaluating the Integral Using the substitution \( x = n \sin \theta \), so that \( dx = n \cos \theta d\theta \), we transform the integral into: \[ I = \int_0^n \frac{dx}{\sqrt{n^2 - x^2}}. \] Since \( x = n \sin \theta \), \[ dx = n \cos \theta d\theta. \] Thus, the integral simplifies to: \[ \int_0^{\frac{\pi}{2}} d\theta = \frac{\pi}{2}. \]
Step 3: Conclusion Taking the limit as \( n \to \infty \), we obtain: \[ \lim_{n \to \infty} S_n = \frac{\pi}{2}. \] % Final Answer Thus, the correct answer is option (3): \( \frac{\pi}{2} \).
Was this answer helpful?
0
0