Step 1: Expression for the function. We are given the function: \[ f(x) = \frac{x^2 - x + 1}{x^2 + x + 1}. \] Step 2: Differentiating the function. We differentiate the function with respect to \(x\) using the quotient rule: \[ f'(x) = \frac{(2x - 1)(x^2 + x + 1) - (x^2 - x + 1)(2x + 1)}{(x^2 + x + 1)^2}. \] Step 3: Solving for the critical points. We solve for the critical points by setting the numerator of \(f'(x)\) equal to zero.
Step 4: Evaluating the maximum and minimum values. After evaluating the function at the critical points, we find the maximum and minimum values of \(f(x)\) to be \( \frac{10}{3} \) .
Step 5: Sum of the maximum and minimum values. The sum is: \[ \frac{10}{3} \]
If two vectors \( \mathbf{a} \) and \( \mathbf{b} \) satisfy the equation:
\[ \frac{|\mathbf{a} + \mathbf{b}| + |\mathbf{a} - \mathbf{b}|}{|\mathbf{a} + \mathbf{b}| - |\mathbf{a} - \mathbf{b}|} = \sqrt{2} + 1, \]
then the value of
\[ \frac{|\mathbf{a} + \mathbf{b}|}{|\mathbf{a} - \mathbf{b}|} \]
is equal to:
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))