Step 1: Expression for the function. We are given the function: \[ f(x) = \frac{x^2 - x + 1}{x^2 + x + 1}. \] Step 2: Differentiating the function. We differentiate the function with respect to \(x\) using the quotient rule: \[ f'(x) = \frac{(2x - 1)(x^2 + x + 1) - (x^2 - x + 1)(2x + 1)}{(x^2 + x + 1)^2}. \] Step 3: Solving for the critical points. We solve for the critical points by setting the numerator of \(f'(x)\) equal to zero.
Step 4: Evaluating the maximum and minimum values. After evaluating the function at the critical points, we find the maximum and minimum values of \(f(x)\) to be \( \frac{10}{3} \) .
Step 5: Sum of the maximum and minimum values. The sum is: \[ \frac{10}{3} \]
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Let \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) be position vectors of three non-collinear points on a plane. If
\[ \alpha = \left[\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}\right] \text{ and } \mathbf{r} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}, \]
Then \(\frac{|\alpha|}{|\mathbf{r}|}\) represents:
If
\[ P = (a \times \mathbf{i})^2 + (a \times \mathbf{j})^2 + (a \times \mathbf{k})^2 \]
and
\[ Q = (a \cdot \mathbf{i})^2 + (a \cdot \mathbf{j})^2 + (a \cdot \mathbf{k})^2, \]
Then find the relation between \(P\) and \(Q\).
An inductor and a resistor are connected in series to an AC source of voltage \( 144\sin(100\pi t + \frac{\pi}{2}) \) volts. If the current in the circuit is \( 6\sin(100\pi t + \frac{\pi}{2}) \) amperes, then the resistance of the resistor is: