Let \( x = 4 + \frac{1}{4 + \frac{1}{4 + \cdots}} \).
This is a continued fraction, and we can express it as:
\(
x = 4 + \frac{1}{x}
\)
Multiplying both sides by \( x \):
\(
x^2 = 4x + 1
\)
Now, subtract \( 4x + 1 \) from both sides:
\(
x^2 - 4x - 1 = 0
\)
This is a quadratic equation. Using the quadratic formula:
\(
x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(-1)}}{2(1)}
\)
\(
x = \frac{4 \pm \sqrt{16 + 4}}{2} = \frac{4 \pm \sqrt{20}}{2}
\)
\(
x = \frac{4 \pm 2\sqrt{5}}{2}
\)
\(
x = 2 \pm \sqrt{5}
\)
Since \( x \) must be positive, we take the positive root:
\(
x = 2 + \sqrt{5}
\)
Thus, the value of the expression is \( 2 + \sqrt{5} \), corresponding to option (2).