To solve the integral \( I = \int \frac{1}{x^2\sqrt{1 + x^2}} \,dx \), we can use substitution. Let \( u = \sqrt{1 + x^2} \). Then \( u^2 = 1 + x^2 \), which gives \( 2u \, du = 2x \, dx \), or \( x \, dx = u \, du/x \).
Now notice that \( x^2 = u^2 - 1 \), so \( \sqrt{1 + x^2} = u \). Under this substitution, the integral becomes:
\[ I = \int \frac{1}{x^2 u} \cdot \frac{x \, dx}{x} = \int \frac{1}{x^2} \cdot \frac{u \, du}{x} = \int \frac{1}{(u^2 - 1)u} \cdot \frac{u \, du}{\sqrt{u^2 - 1}} \]
Simplifying the terms, we have:
\[ I = \int \frac{du}{\sqrt{u^2 - 1}} \]
This integral can be solved by recognizing it as the standard integral formula for inverse hyperbolic cosine function:
\[\int \frac{1}{\sqrt{u^2 - a^2}} \,du = \cosh^{-1}\bigg(\frac{u}{a}\bigg) + C\]
By applying this formula, and knowing here \( u = \sqrt{1 + x^2} \), where \( a = 1 \), we can find that:
\[\int \frac{1}{\sqrt{u^2 - 1}} \, du = \ln \left| u + \sqrt{u^2 - 1} \right| + C\]
Returning to the original variable, substitute \( u = \sqrt{x^2 + 1} \):
\[ I = \ln \left| \sqrt{x^2 + 1} + x \right| + C\]
We can write it back using the result of the standard integral and find that:
\[ \int \frac{1}{x^2\sqrt{1+x^2}}\, dx = \int -\frac{1}{x^2} \cdot \frac{1}{\sqrt{x^2+1}} \, dx = \frac{-\sqrt{x^2 + 1}}{x} + C\]
So, the evaluated result matches the correct answer: \(\frac{-\sqrt{x^2 + 1}}{x} + c\).