Find the value of \[ \int e^x \left( \tan^{-1} x + \frac{1}{1 + x^2} \right) dx. \]
Prove that the number of equivalence relations in the set \( \{1, 2, 3\} \) including \( \{(1, 2)\} \) and \( \{(2, 1)\} \) is 2.
If \( x = a(0 - \sin \theta) \), \( y = a(1 + \cos \theta) \), find \[ \frac{dy}{dx}. \]
Integrate \[ \int \frac{\sin(\tan^{-1} x)}{1 + x^2} \, dx. \]
Solve: \[ \frac{dy}{dx} = \frac{1 + y^2}{1 + x^2}. \]
If \( e^y(x + 1) = 1 \), show that \[ \frac{d^2y}{dx^2} = \left( \frac{dy}{dx} \right)^2. \]
A relation \( R = \{(a, b) : a = b - 2, b \geq 6 \} \) is defined on the set \( \mathbb{N} \). Then the correct answer will be: