Let \( I = \int x^2 e^{x^3} dx \). Using substitution, let:
\[
u = x^3 \Rightarrow du = 3x^2 dx.
\]
Rewriting,
\[
\frac{du}{3} = x^2 dx.
\]
Thus, the integral becomes:
\[
I = \int e^u \frac{du}{3} = \frac{1}{3} \int e^u du.
\]
Since \( \int e^u du = e^u \),
\[
I = \frac{1}{3} e^u + C.
\]
Substituting back \( u = x^3 \),
\[
I = \frac{1}{3} e^{x^3} + C.
\]