Using the integration by parts method, let:
- \( u = x \Rightarrow du = dx \).
- \( dv = \frac{\sin x}{1 + \cos^2 x} dx \).
To integrate \( dv \), substitute \( t = 1 + \cos^2 x \Rightarrow dt = -2 \cos x \sin x dx \).
Thus, rewriting the integral:
\[
I = \int x d \left( \tan^{-1} (\cos x) \right).
\]
Using integration by parts:
\[
I = x \tan^{-1} (\cos x) \Big|_{0}^{\pi} - \int_{0}^{\pi} \tan^{-1} (\cos x) dx.
\]
From symmetry properties, the integral simplifies to:
\[
I = \frac{\pi}{4} \pi - \frac{\pi^2}{4} = \frac{\pi^2}{4}.
\]