Solve: \[ \frac{dy}{dx} = \frac{1 + y^2}{1 + x^2}. \]
Step 1: Rearrange the equation to separate the variables: \[ \frac{dy}{1 + y^2} = \frac{dx}{1 + x^2}. \] Step 2: Integrate both sides: \[ \int \frac{1}{1 + y^2} \, dy = \int \frac{1}{1 + x^2} \, dx. \] Step 3: Recognize that the integral of \( \frac{1}{1 + u^2} \) is \( \tan^{-1}(u) \): \[ \tan^{-1}(y) = \tan^{-1}(x) + C, \] where \( C \) is the constant of integration. Thus, the solution is: \[ \tan^{-1}(y) = \tan^{-1}(x) + C. \]
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Mention the events related to the following historical dates:
\[\begin{array}{rl} \bullet & 321 \,\text{B.C.} \\ \bullet & 1829 \,\text{A.D.} \\ \bullet & 973 \,\text{A.D.} \\ \bullet & 1336 \,\text{A.D.} \\ \bullet & 1605 \,\text{A.D.} \\ \bullet & 1875 \,\text{A.D.} \\ \bullet & 1885 \,\text{A.D.} \\ \bullet & 1907 \,\text{A.D.} \\ \bullet & 1942 \,\text{A.D.} \\ \bullet & 1935 \,\text{A.D.} \end{array}\]