Show that the vectors \( 2\hat{i} - \hat{j} + \hat{k}, \hat{i} - 3\hat{j} - 5\hat{k}, 3\hat{i} - 4\hat{j} - 4\hat{k} \) form the vertices of a right-angled triangle.
Find the angle between the lines \[ \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{-5} \quad \text{and} \quad \frac{x+3}{-3} = \frac{y-1}{2} = \frac{z-5}{5}. \]
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $