If \( x = a(0 - \sin \theta) \), \( y = a(1 + \cos \theta) \), find \[ \frac{dy}{dx}. \]
Step 1: Differentiate both \( x \) and \( y \) with respect to \( \theta \): \[ \frac{dx}{d\theta} = a \cdot (- \cos \theta), \] \[ \frac{dy}{d\theta} = a \cdot (- \sin \theta). \] Step 2: Use the chain rule to find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-a \sin \theta}{-a \cos \theta} = \frac{\sin \theta}{\cos \theta} = \tan \theta. \] Thus, \( \frac{dy}{dx} = \tan \theta \).
Find the least value of ‘a’ for which the function \( f(x) = x^2 + ax + 1 \) is increasing on the interval \( [1, 2] \).
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $