We start by factoring the denominator:
\[
2x^2 + 6x + 5 = 2(x^2 + 3x + \frac{5}{2})
\]
Factoring further:
\[
2x^2 + 6x + 5 = 2(x + 1)(x + \frac{5}{2}).
\]
Now, use partial fraction decomposition:
\[
\frac{x+2}{2(x+1)(x+\frac{5}{2})} = \frac{A}{x+1} + \frac{B}{x+\frac{5}{2}}.
\]
Multiplying by the denominator:
\[
x+2 = A(x+\frac{5}{2}) + B(x+1).
\]
Solving for \( A \) and \( B \), we integrate each term separately and get:
\[
\int \frac{x+2}{2x^2+6x+5} dx = \frac{1}{2} \ln |x+1| - \frac{1}{2} \ln |x+\frac{5}{2}| + C.
\]