Let the two numbers be \( x \) and \( y \). Given:
\[
x + y = 15.
\]
We need to minimize:
\[
S = x^2 + y^2.
\]
Using \( y = 15 - x \), we rewrite:
\[
S = x^2 + (15-x)^2.
\]
Expanding:
\[
S = x^2 + 225 - 30x + x^2 = 2x^2 - 30x + 225.
\]
Differentiating:
\[
\frac{dS}{dx} = 4x - 30.
\]
Setting \( \frac{dS}{dx} = 0 \):
\[
4x - 30 = 0 \Rightarrow x = \frac{30}{4} = 7.5.
\]
Since \( y = 15 - x = 7.5 \), the numbers are \( 7.5 \) and \( 7.5 \).