Rewriting the given equation:
\[
y \log y \, dx = x \, dy.
\]
Rearrange to separate variables:
\[
\frac{dy}{dx} = \frac{y \log y}{x}.
\]
This is a separable differential equation:
\[
\frac{dy}{y \log y} = \frac{dx}{x}.
\]
Integrating both sides:
\[
\int \frac{dy}{y \log y} = \int \frac{dx}{x}.
\]
Using substitution \( u = \log y \), \( du = \frac{dy}{y} \),
\[
\int \frac{du}{u} = \log |u| = \log |\log y|.
\]
So we obtain:
\[
\log |\log y| = \log |x| + C.
\]
Exponentiating both sides,
\[
\log y = Cx.
\]
Taking exponent again,
\[
y = e^{Cx}.
\]