Let $f(x) = \begin{cases} h(x), & 0<x<C \\-h(-x), & -C<x<0 \end{cases}$ and $f(x+2C)=f(x) \; \forall x \in \mathbb{R}$. If the Fourier series of $f(x) = \sum_{n=0}^\infty \left(a_n \cos\frac{n\pi x}{C} + b_n \sin\frac{n\pi x}{C}\right)$ then $\sum_{n=0}^\infty a_n b_n =$
The table below gives the values of \( f(x) \) at five equidistant points of \( x \):
Then the approximate value of \( \int_0^2 f(x) \, dx \) by Trapezoidal Rule is:
If \(u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)\), then the value of \( x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \) is: