Given the probability density function (pdf) of a continuous random variable \(X\):
\[ f(x) = \begin{cases} x^3, & 0 \leq x \leq 1 \\ (2 - x)^3, & 1 \leq x \leq 2 \\ \frac{1}{2}, & 2 \leq x \leq 3 \\ 0, & \text{otherwise} \end{cases} \]
Step 1: Verify that \( f(x) \) is a valid pdf
We should confirm \(\int_{-\infty}^\infty f(x) dx = 1\). Given piecewise nature:
\[ \int_0^1 x^3 dx + \int_1^2 (2 - x)^3 dx + \int_2^3 \frac{1}{2} dx = 1 \]
Check if true:
Total:
\[ \frac{1}{4} + \frac{1}{4} + \frac{1}{2} = 1 \]
So \( f(x) \) is a valid pdf.
Step 2: Find the mean \( \mu = E[X] = \int x f(x) dx \)
Calculate piecewise:
\[ E[X] = \int_0^1 x \cdot x^3 dx + \int_1^2 x \cdot (2 - x)^3 dx + \int_2^3 x \cdot \frac{1}{2} dx \]
Calculate each integral:
Step 3: Add the results
\[ E[X] = \frac{1}{5} + \frac{3}{10} + \frac{5}{4} = \frac{2}{10} + \frac{3}{10} + \frac{12.5}{10} = \frac{17.5}{10} = \frac{35}{20} = \frac{7}{4} \]
Answer: The mean of the random variable is \(\boxed{\frac{7}{4}}\).